Math 304-504
Linear Algebra
Lecture 22:
Similarity.

Basis and coordinates

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}
$$

where $x_{i} \in \mathbb{R}$. The coefficients $x_{1}, x_{2}, \ldots, x_{n}$ are called the coordinates of \mathbf{v} with respect to the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

The mapping

$$
\text { vector } \mathbf{v} \mapsto \text { its coordinates }\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

provides a one-to-one correspondence between V and \mathbb{R}^{n}. This mapping is linear.

Change of coordinates

Let V be a vector space.
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and $g_{1}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.
Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be another basis for V and $g_{2}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

The composition $g_{2} \circ g_{1}^{-1}$ is a linear mapping of \mathbb{R}^{n} to itself. It is represented as $\mathbf{v} \mapsto U \mathbf{v}$, where U is an $n \times n$ matrix. U is called the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2} \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \mathbf{u}_{2} \ldots, \mathbf{u}_{n}$. Columns of U are coordinates of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$.

Matrix of a linear mapping

Let V, W be vector spaces and $f: V \rightarrow W$ be a linear map. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and $g_{1}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis. Let $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}$ be a basis for W and $g_{2}: W \rightarrow \mathbb{R}^{m}$ be the coordinate mapping corresponding to this basis.

The composition $g_{2} \circ f \circ g_{1}^{-1}$ is a linear mapping of \mathbb{R}^{n} to \mathbb{R}^{m}. It is represented as $\mathbf{v} \mapsto A \mathbf{v}$, where A is an $m \times n$ matrix. A is called the matrix of f with respect to bases $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$. Columns of A are coordinates of vectors $f\left(\mathbf{v}_{1}\right), \ldots, f\left(\mathbf{v}_{n}\right)$ with respect to the basis $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$.

Change of basis for a linear operator

Let $L: V \rightarrow V$ be a linear oprator on a vector space V.
Let A be the matrix of L relative to a basis $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ for
V. Let B be the matrix of L relative to another basis
$\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ for V.
Let U be the transition matrix from the basis $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ to $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$.

It follows that $U A=B U$.
Then $A=U^{-1} B U$ and $B=U A U^{-1}$.

Problem. Consider a linear operator $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
L\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y} .
$$

Find the matrix of L with respect to the basis
$\mathbf{v}_{1}=(3,1), \mathbf{v}_{2}=(2,1)$.
Let S be the matrix of L with respect to the standard basis, N be the matrix of L with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$, and U be the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}$. Then $N=U^{-1} S U$.

$$
\begin{gathered}
S=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right), \\
N=U^{-1} S U=\left(\begin{array}{rr}
1 & -2 \\
-1 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right) \\
=\left(\begin{array}{rr}
1 & -1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)=\left(\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right) .
\end{gathered}
$$

Problem. Let $A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.
Find the matrix of the linear operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, $L(\mathbf{x})=A \mathbf{x}$ with respect to the basis $\mathbf{v}_{1}=(-1,1,0)$, $\mathbf{v}_{2}=(1,1,0), \mathbf{v}_{3}=(-1,0,1)$.
Let B be the desired matrix. The columns of B are coordinates of the vectors $L\left(\mathbf{v}_{1}\right), L\left(\mathbf{v}_{2}\right), L\left(\mathbf{v}_{3}\right)$ with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.
$L\left(\mathbf{v}_{1}\right)=(0,0,0), \quad L\left(\mathbf{v}_{2}\right)=(2,2,0)=2 \mathbf{v}_{2}$,
$L\left(\mathbf{v}_{3}\right)=(-2,0,2)=2 \mathbf{v}_{3}$.
Thus $B=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$.

Problem. Let $A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$. Find A^{16}.
It follows from the solution of the previous problem that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), \quad U=\left(\begin{array}{rrr}
-1 & 1 & -1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Note that $A^{2}=A A=U B U^{-1} U B U^{-1}=U B^{2} U^{-1}$, $A^{3}=A^{2} A=U B^{2} U^{-1} U B U^{-1}=U B^{3} U^{-1}$, and so on.

In particular, $A^{16}=U B^{16} U^{-1}$.
Clearly, $B^{16}=\operatorname{diag}\left(0,2^{16}, 2^{16}\right)=2^{15} B$.
Hence $A^{16}=U\left(2^{15} B\right) U^{-1}=2^{15} U B U^{-1}=2^{15} A$ $=32768$ A.

$$
A^{16}=\left(\begin{array}{ccr}
32768 & 32768 & -32768 \\
32768 & 32768 & 32768 \\
0 & 0 & 65536
\end{array}\right)
$$

Similarity

Definition. An $n \times n$ matrix B is said to be similar to an $n \times n$ matrix A if $B=S^{-1} A S$ for some nonsingular $n \times n$ matrix S.

Remark. Two $n \times n$ matrices are similar if and only if they represent the same linear operator on \mathbb{R}^{n} with respect to some bases.

Theorem Similarity is an equivalence relation, i.e.,
(i) any square matrix A is similar to itself;
(ii) if B is similar to A, then A is similar to B;
(iii) if A is similar to B and B is similar to C, then A is similar to C.

Theorem Similarity is an equivalence relation, i.e.,
(i) any square matrix A is similar to itself;
(ii) if B is similar to A, then A is similar to B;
(iii) if A is similar to B and B is similar to C, then
A is similar to C.
Proof: (i) $A=I^{-1} A I$.
(ii) If $B=S^{-1} A S$ then $A=S B S^{-1}=\left(S^{-1}\right)^{-1} B S^{-1}$.
(iii) If $A=S^{-1} B S$ and $B=T^{-1} C T$ then
$A=S^{-1} T^{-1} C T S=(T S)^{-1} C(T S)$.
Theorem If A and B are similar matrices then they have the same (i) determinant, (ii) trace $=$ the sum of diagonal entries, (iii) rank, and (iv) nullity.

