Math 304-504
Linear Algebra
Lecture 23:
Scalar product.

Vectors: geometric approach

- A vector is represented by a directed segment.
- Directed segment is drawn as an arrow.
- Different arrows represent the same vector if they are of the same length and direction.

Vectors: geometric approach

$\overrightarrow{A B}$ denotes the vector represented by the arrow with tip at B and tail at A.
$\overrightarrow{A A}$ is called the zero vector and denoted $\mathbf{0}$.

Vectors: geometric approach

If $\mathbf{v}=\overrightarrow{A B}$ then $\overrightarrow{B A}$ is called the negative vector of \mathbf{v} and denoted $-\mathbf{v}$.

Vector addition

Given vectors \mathbf{a} and \mathbf{b}, their sum $\mathbf{a}+\mathbf{b}$ is defined by the rule $\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$.
That is, choose points A, B, C so that $\overrightarrow{A B}=\mathbf{a}$ and $\overrightarrow{B C}=\mathbf{b}$. Then $\mathbf{a}+\mathbf{b}=\overrightarrow{A C}$.

The difference of the two vectors is defined as $\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})$.

Properties of vector addition:
$\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$
$(\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c})$
$\mathbf{a}+\mathbf{0}=\mathbf{0}+\mathbf{a}=\mathbf{a}$
$\mathbf{a}+(-\mathbf{a})=(-\mathbf{a})+\mathbf{a}=\mathbf{0}$
(commutative law)
(associative law)

Let $\overrightarrow{A B}=\mathbf{a}$. Then $\mathbf{a}+\mathbf{0}=\overrightarrow{A B}+\overrightarrow{B B}=\overrightarrow{A B}=\mathbf{a}$,
$\mathbf{a}+(-\mathbf{a})=\overrightarrow{A B}+\overrightarrow{B A}=\overrightarrow{A A}=\mathbf{0}$.
Let $\overrightarrow{A B}=\mathbf{a}, \overrightarrow{B C}=\mathbf{b}$, and $\overrightarrow{C D}=\mathbf{c}$. Then
$(\mathbf{a}+\mathbf{b})+\mathbf{c}=(\overrightarrow{A B}+\overrightarrow{B C})+\overrightarrow{C D}=\overrightarrow{A C}+\overrightarrow{C D}=\overrightarrow{A D}$,
$\mathbf{a}+(\mathbf{b}+\mathbf{c})=\overrightarrow{A B}+(\overrightarrow{B C}+\overrightarrow{C D})=\overrightarrow{A B}+\overrightarrow{B D}=\overrightarrow{A D}$.

Parallelogram rule

Let $\overrightarrow{A B}=\mathbf{a}, \overrightarrow{B C}=\mathbf{b}, \overrightarrow{A B^{\prime}}=\mathbf{b}$, and $\overrightarrow{B^{\prime} C^{\prime}}=\mathbf{a}$.
Then $\mathbf{a}+\mathbf{b}=\overrightarrow{A C}, \mathbf{b}+\mathbf{a}=\overrightarrow{A C^{\prime}}$.

Wrong picture!

Parallelogram rule

Let $\overrightarrow{A B}=\mathbf{a}, \overrightarrow{B C}=\mathbf{b}, \overrightarrow{A B^{\prime}}=\mathbf{b}$, and $\overrightarrow{B^{\prime} C^{\prime}}=\mathbf{a}$.
Then $\mathbf{a}+\mathbf{b}=\overrightarrow{A C}, \mathbf{b}+\mathbf{a}=\overrightarrow{A C^{\prime}}$.

Right picture!

Scalar multiplication

Let \mathbf{v} be a vector and $r \in \mathbb{R}$. By definition, $r \mathbf{v}$ is a vector whose magnitude is $|r|$ times the magnitude of \mathbf{v}. The direction of $r \mathbf{v}$ coincides with that of \mathbf{v} if $r>0$. If $r<0$ then the directions of $r \mathbf{v}$ and \mathbf{v} are opposite.
Properties of scalar multiplication:
$r(\mathbf{a}+\mathbf{b})=r \mathbf{a}+r \mathbf{b}$
$(r+s) \mathbf{a}=r \mathbf{a}+s \mathbf{a}$
$r(s \mathbf{a})=(r s) \mathbf{a}$
$1 \mathbf{a}=\mathbf{a}$
$0 \mathbf{a}=\mathbf{0}$
(distributive law \#1)
(distributive law \#2)
(associative law)

Beyond linearity: Euclidean structure

The length (or the magnitude) of a vector $\overrightarrow{A B}$ is the length of the representing segment $A B$. The length of a vector \mathbf{v} is denoted $|\mathbf{v}|$ or $\|\mathbf{v}\|$.

Given vectors \mathbf{x} and \mathbf{y}, let A, B, and C be points such that $\overrightarrow{A B}=\mathbf{x}$ and $\overrightarrow{A C}=\mathbf{y}$. Then $\angle B A C$ is called the angle between \mathbf{x} and \mathbf{y}.
The vectors \mathbf{x} and \mathbf{y} are called orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if the angle between them equals 90°.

The scalar product (or dot product) of vectors \mathbf{x} and y is

$$
\mathbf{x} \cdot \mathbf{y}=|\mathbf{x}||\mathbf{y}| \cos \theta,
$$

where θ is the angle between \mathbf{x} and \mathbf{y}. The scalar product is also denoted (\mathbf{x}, \mathbf{y}) or $\langle\mathbf{x}, \mathbf{y}\rangle$.
The vectors \mathbf{x} and \mathbf{y} are orthogonal if and only if $\mathbf{x} \cdot \mathbf{y}=0$.

Properties of vector length:

$$
\begin{array}{lr}
|\mathbf{x}| \geq 0, \quad|\mathbf{x}|=0 \text { only if } \mathbf{x}=\mathbf{0} & \text { (positivity) } \\
|r \mathbf{x}|=|r||\mathbf{x}| & \text { (homogeneity) } \\
|\mathbf{x}+\mathbf{y}| \leq|\mathbf{x}|+|\mathbf{y}| & \text { (triangle inequality) }
\end{array}
$$

Pythagorean Theorem:

$$
\mathbf{x} \perp \mathbf{y} \Longrightarrow|\mathbf{x}+\mathbf{y}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}
$$

3-dimensional Pythagorean Theorem:
If vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are pairwise orthogonal then

$$
|x+y+z|^{2}=|x|^{2}+|y|^{2}+|z|^{2}
$$

Law of cosines:

$$
\begin{aligned}
& |\mathbf{x}-\mathbf{y}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}-2|\mathbf{x}||\mathbf{y}| \cos \theta \\
& \Longrightarrow|\mathbf{x}-\mathbf{y}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}-2 \mathbf{x} \cdot \mathbf{y}
\end{aligned}
$$

Parallelogram Identity:

$$
|\mathbf{x}+\mathbf{y}|^{2}+|\mathbf{x}-\mathbf{y}|^{2}=2|\mathbf{x}|^{2}+2|\mathbf{y}|^{2}
$$

Vectors: algebraic approach

An n-dimensional coordinate vector is an element of \mathbb{R}^{n}, i.e., an ordered n-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of real numbers.

Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be vectors, and $r \in \mathbb{R}$ be a scalar. Then, by definition,
$\mathbf{a}+\mathbf{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)$, $r \mathbf{a}=\left(r a_{1}, r a_{2}, \ldots, r a_{n}\right)$,
$\mathbf{0}=(0,0, \ldots, 0)$,
$-\mathbf{b}=\left(-b_{1},-b_{2}, \ldots,-b_{n}\right)$,
$\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})=\left(a_{1}-b_{1}, a_{2}-b_{2}, \ldots, a_{n}-b_{n}\right)$.

Properties of vector addition and scalar multiplication:

$$
\begin{aligned}
& \mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a} \\
& (\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c}) \\
& \mathbf{a}+\mathbf{0}=\mathbf{0}+\mathbf{a}=\mathbf{a} \\
& \mathbf{a}+(-\mathbf{a})=(-\mathbf{a})+\mathbf{a}=\mathbf{0} \\
& r(\mathbf{a}+\mathbf{b})=r \mathbf{a}+r \mathbf{b} \\
& (r+s) \mathbf{a}=r \mathbf{a}+s \mathbf{a} \\
& r(s \mathbf{a})=(r s) \mathbf{a} \\
& 1 \mathbf{a}=\mathbf{a} \\
& 0 \mathbf{a}=\mathbf{0}
\end{aligned}
$$

Cartesian coordinates: geometric meets algebraic

Once we specify an origin O, each point A is associated a position vector $\overrightarrow{O A}$. Conversely, every vector has a unique representative with tail at O.
Cartesian coordinates allow us to identify a line, a plane, and space with $\mathbb{R}, \mathbb{R}^{2}$, and \mathbb{R}^{3}, respectively.

Length and distance

Definition. The length of a vector
$\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$ is

$$
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

The distance between vectors/points \mathbf{x} and \mathbf{y} is

$$
\|\mathbf{y}-\mathbf{x}\|
$$

Properties of length:

$$
\begin{array}{lr}
\|\mathbf{x}\| \geq 0, \quad\|\mathbf{x}\|=0 \text { only if } \mathbf{x}=\mathbf{0} & \text { (positivity) } \\
\|r \mathbf{x}\|=|r|\|\mathbf{x}\| & \text { (homogeneity) } \\
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| & \text { (triangle inequality) }
\end{array}
$$

Scalar product

Definition. The scalar product of vectors

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { and } \mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \text { is }
$$

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\sum_{k=1}^{n} x_{k} y_{k}
$$

Properties of scalar product:

$$
\begin{aligned}
& \mathbf{x} \cdot \mathbf{x} \geq 0, \mathbf{x} \cdot \mathbf{x}=0 \text { only if } \mathbf{x}=\mathbf{0} \\
& \mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}
\end{aligned}
$$

$$
(\mathbf{x}+\mathbf{y}) \cdot \mathbf{z}=\mathbf{x} \cdot \mathbf{z}+\mathbf{y} \cdot \mathbf{z}
$$

$$
(r \mathbf{x}) \cdot \mathbf{y}=r(\mathbf{x} \cdot \mathbf{y})
$$

(distributive law)
(homogeneity)

Relations between lengths and scalar products:

$$
\begin{aligned}
& \|\mathbf{x}\|=\sqrt{\mathbf{x} \cdot \mathbf{x}} \\
& |\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \text { (Cauchy-Schwarz inequality) } \\
& \|\mathbf{x}-\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}-2 \mathbf{x} \cdot \mathbf{y}
\end{aligned}
$$

By the Cauchy-Schwarz inequality, for any nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ we have

$$
\cos \theta=\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|} \text { for some } 0 \leq \theta \leq \pi
$$

θ is called the angle between the vectors \mathbf{x} and \mathbf{y}.
The vectors \mathbf{x} and \mathbf{y} are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y}=0$ (i.e., if $\theta=90^{\circ}$).

Problem. Find the angle θ between vectors $\mathbf{x}=(2,-1)$ and $\mathbf{y}=(3,1)$.
$\mathbf{x} \cdot \mathbf{y}=5, \quad\|\mathbf{x}\|=\sqrt{5}, \quad\|\mathbf{y}\|=\sqrt{10}$.
$\cos \theta=\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}=\frac{5}{\sqrt{5} \sqrt{10}}=\frac{1}{\sqrt{2}} \Longrightarrow \theta=45^{\circ}$

Problem. Find the angle ϕ between vectors
$\mathbf{v}=(-2,1,3)$ and $\mathbf{w}=(4,5,1)$.
$\mathbf{v} \cdot \mathbf{w}=0 \Longrightarrow \mathbf{v} \perp \mathbf{w} \Longrightarrow \phi=90^{\circ}$

Orthogonal projection

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, with $\mathbf{y} \neq \mathbf{0}$.
Then there exists a unique decomposition $\mathbf{x}=\mathbf{p}+\mathbf{o}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y}.
Namely, $\mathbf{p}=\alpha \mathbf{u}$, where \mathbf{u} is the unit vector of the same direction as \mathbf{y}, and $\alpha=\mathbf{x} \cdot \mathbf{u}$. Indeed, $\mathbf{p} \cdot \mathbf{u}=(\alpha \mathbf{u}) \cdot \mathbf{u}=\alpha(\mathbf{u} \cdot \mathbf{u})=\alpha\|\mathbf{u}\|^{2}=\alpha=\mathbf{x} \cdot \mathbf{u}$. Hence $\mathbf{o} \cdot \mathbf{u}=(\mathbf{x}-\mathbf{p}) \cdot \mathbf{u}=\mathbf{x} \cdot \mathbf{u}-\mathbf{p} \cdot \mathbf{u}=0 \Longrightarrow \mathbf{o} \perp \mathbf{u}$ $\Longrightarrow \mathbf{o} \perp \mathbf{y}$.
\mathbf{p} is called the vector projection of \mathbf{x} onto \mathbf{y}, $\alpha= \pm\|\mathbf{p}\|$ is called the scalar projection of \mathbf{x} onto \mathbf{y}.

$$
\mathbf{u}=\frac{\mathbf{y}}{\|\mathbf{y}\|}, \quad \alpha=\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|}, \quad \mathbf{p}=\frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}
$$

Problem. Find the distance from the point $\mathbf{x}=(3,1)$ to the line spanned by $\mathbf{y}=(2,-1)$.

Consider the decomposition $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where \mathbf{p} is parallel to \mathbf{y} while $\mathbf{o} \perp \mathbf{y}$. The required distance is the length of the orthogonal component \mathbf{o}.
$\mathbf{p}=\frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}=\frac{5}{5}(2,-1)=(2,-1)$,
$\mathbf{o}=\mathbf{x}-\mathbf{p}=(3,1)-(2,-1)=(1,2), \quad\|\mathbf{o}\|=\sqrt{5}$.
Problem. Find the point on the line $y=-x$ that is closest to the point $(3,4)$.

The required point is the projection \mathbf{p} of $\mathbf{v}=(3,4)$ on the vector $\mathbf{w}=(1,-1)$ spanning the line $y=-x$.
$\mathbf{p}=\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}=\frac{-1}{2}(1,-1)=\left(-\frac{1}{2}, \frac{1}{2}\right)$

