Math 304-504
Linear Algebra
Lecture 24:
Orthogonal subspaces.

Scalar product in \mathbb{R}^{n}

Definition. The scalar product of vectors

$$
\begin{gathered}
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { and } \mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \text { is } \\
\mathbf{x \cdot \mathbf { y } = x _ { 1 } y _ { 1 } + x _ { 2 } y _ { 2 } + \cdots + x _ { n } y _ { n } .}
\end{gathered}
$$

Properties of scalar product:

$$
\begin{aligned}
& \mathbf{x} \cdot \mathbf{x} \geq 0, \quad \mathbf{x} \cdot \mathbf{x}=0 \text { only if } \mathbf{x}=\mathbf{0} \\
& \mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x} \\
& \mathbf{z}(\mathbf{x}+\mathbf{y}) \cdot \mathbf{z}=\mathbf{x} \cdot \mathbf{z}+\mathbf{y} \cdot \mathbf{z} \\
& (r \mathbf{x}) \cdot \mathbf{y}=r(\mathbf{x} \cdot \mathbf{y})
\end{aligned}
$$

(positivity)
(symmetry)
(distributive law)
(homogeneity)

In particular, $\mathbf{x} \cdot \mathbf{y}$ is a bilinear function (i.e., it is both a linear function of \mathbf{x} and a linear function of \mathbf{y}).

Orthogonality

Definition 1. Vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x \cdot y = 0}$.

Definition 2. A vector $\mathrm{x} \in \mathbb{R}^{n}$ is said to be orthogonal to a nonempty set $Y \subset \mathbb{R}^{n}$ (denoted $\mathbf{x} \perp Y)$ if $\mathbf{x} \cdot \mathbf{y}=0$ for any $\mathbf{y} \in Y$.

Definition 3. Nonempty sets $X, Y \subset \mathbb{R}^{n}$ are said to be orthogonal (denoted $X \perp Y$) if $\mathbf{x} \cdot \mathbf{y}=0$ for any $\mathbf{x} \in X$ and $\mathbf{y} \in Y$.

Examples in \mathbb{R}^{3}. - The line $x=y=0$ is orthogonal to the line $y=z=0$. Indeed, if $\mathbf{v}=(0,0, z)$ and $\mathbf{w}=(x, 0,0)$ then $\mathbf{v} \cdot \mathbf{w}=0$.

- The line $x=y=0$ is orthogonal to the plane $z=0$.
Indeed, if $\mathbf{v}=(0,0, z)$ and $\mathbf{w}=(x, y, 0)$ then $\mathbf{v} \cdot \mathbf{w}=0$.
- The line $x=y=0$ is not orthogonal to the plane $z=1$.
The vector $\mathbf{v}=(0,0,1)$ belongs to both the line and the plane, and $\mathbf{v} \cdot \mathbf{v}=1 \neq 0$.
- The plane $z=0$ is not orthogonal to the plane $y=0$.
The vector $\mathbf{v}=(1,0,0)$ belongs to both planes and $\mathbf{v} \cdot \mathbf{v}=1 \neq 0$.

Proposition 1 If $X, Y \in \mathbb{R}^{n}$ are orthogonal sets then either they are disjoint or $X \cap Y=\{\mathbf{0}\}$.

Proof: $\mathbf{v} \in X \cap Y \Longrightarrow \mathbf{v} \perp \mathbf{v} \Longrightarrow \mathbf{v} \cdot \mathbf{v}=0 \Longrightarrow \mathbf{v}=\mathbf{0}$.
Proposition 2 Let V be a subspace of \mathbb{R}^{n} and S be a spanning set for V. Then for any $\mathbf{x} \in \mathbb{R}^{n}$

$$
\mathbf{x} \perp S \Longrightarrow \mathbf{x} \perp V
$$

Proof: Any $\mathbf{v} \in V$ is represented as $\mathbf{v}=a_{1} \mathbf{v}_{1}+\cdots+a_{k} \mathbf{v}_{k}$, where $\mathbf{v}_{i} \in S$ and $a_{i} \in \mathbb{R}$. If $\mathbf{x} \perp S$ then

$$
\mathbf{x} \cdot \mathbf{v}=a_{1}\left(\mathbf{x} \cdot \mathbf{v}_{1}\right)+\cdots+a_{k}\left(\mathbf{x} \cdot \mathbf{v}_{k}\right)=0 \Longrightarrow \mathbf{x} \perp \mathbf{v} .
$$

Example. The vector $\mathbf{v}=(1,1,1)$ is orthogonal to the plane spanned by vectors $\mathbf{w}_{1}=(2,-3,1)$ and $\mathbf{w}_{2}=(0,1,-1)$ (because $\mathbf{v} \cdot \mathbf{w}_{1}=\mathbf{v} \cdot \mathbf{w}_{2}=0$).

Orthogonal complement

Definition. Let $S \subset \mathbb{R}^{n}$. The orthogonal complement of S, denoted S^{\perp}, is the set of all vectors $\mathbf{x} \in \mathbb{R}^{n}$ that are orthogonal to S. That is, S^{\perp} is the largest subset of \mathbb{R}^{n} orthogonal to S.

Theorem $1 S^{\perp}$ is a subspace of \mathbb{R}^{n}.
Note that $S \subset\left(S^{\perp}\right)^{\perp}$, hence $\operatorname{Span}(S) \subset\left(S^{\perp}\right)^{\perp}$.
Theorem $2\left(S^{\perp}\right)^{\perp}=\operatorname{Span}(S)$. In particular, for any subspace V we have $\left(V^{\perp}\right)^{\perp}=V$.

Example. Consider a line $L=\{(x, 0,0) \mid x \in \mathbb{R}\}$ and a plane $\Pi=\{(0, y, z) \mid y, z \in \mathbb{R}\}$ in \mathbb{R}^{3}.
Then $L^{\perp}=\Pi$ and $\Pi^{\perp}=L$.

Fundamental subspaces

Definition. Given an $m \times n$ matrix A, let

$$
\begin{aligned}
& N(A)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\} \\
& R(A)=\left\{\mathbf{b} \in \mathbb{R}^{m} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

$R(A)$ is the range of a linear mapping $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, $L(\mathbf{x})=A \mathbf{x} . \quad N(A)$ is the kernel of L.
Also, $N(A)$ is the nullspace of the matrix A while $R(A)$ is the column space of A. The row space of A is $R\left(A^{T}\right)$.
The subspaces $N(A), R\left(A^{T}\right) \subset \mathbb{R}^{n}$ and $R(A), N\left(A^{T}\right) \subset \mathbb{R}^{m}$ are fundamental subspaces associated to the matrix A.

Theorem $N(A)=R\left(A^{T}\right)^{\perp}, \quad N\left(A^{T}\right)=R(A)^{\perp}$.
That is, the nullspace of a matrix is the orthogonal complement of its row space.
Proof: The equality $A \mathbf{x}=\mathbf{0}$ means that the vector \mathbf{x} is orthogonal to rows of the matrix A. Therefore $N(A)=S^{\perp}$, where S is the set of rows of A. It remains to note that $S^{\perp}=\operatorname{Span}(S)^{\perp}=R\left(A^{T}\right)^{\perp}$.

Corollary Let V be a subspace of \mathbb{R}^{n}. Then $\operatorname{dim} V+\operatorname{dim} V^{\perp}=n$.
Proof: Pick a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ for V. Let A be the $k \times n$ matrix whose rows are vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$. Then $V=R\left(A^{T}\right)$ and $V^{\perp}=N(A)$. Consequently, $\operatorname{dim} V$ and $\operatorname{dim} V^{\perp}$ are rank and nullity of A. Therefore $\operatorname{dim} V+\operatorname{dim} V^{\perp}$ equals the number of columns of A, which is n.

Direct sum

Definition. Let U, V be subspaces of a vector space W. We say that W is a direct sum of U and V (denoted $W=U \oplus V)$ if any $\mathbf{w} \in W$ is uniquely represented as $\mathbf{w}=\mathbf{u}+\mathbf{v}$, where $\mathbf{u} \in U$ and $\mathbf{v} \in V$.
Remark. Given subspaces $U, V \subset W$, we can define a set $U+V=\{\mathbf{u}+\mathbf{v} \mid \mathbf{u} \in U, \mathbf{v} \in V\}$, which is also a subspace. However $U \oplus V$ may not be well defined.
Proposition The direct sum $U \oplus V$ is well defined if and only if $U \cap V=\{\mathbf{0}\}$.
Proof: $U \oplus V$ is well defined if for any $\mathbf{u}_{1}, \mathbf{u}_{2} \in U$ and $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$ we have $\mathbf{u}_{1}+\mathbf{v}_{1}=\mathbf{u}_{2}+\mathbf{v}_{2} \Longrightarrow \mathbf{u}_{1}=\mathbf{u}_{2}$ and $\mathbf{v}_{1}=\mathbf{v}_{2}$. Now note that $\mathbf{u}_{1}+\mathbf{v}_{1}=\mathbf{u}_{2}+\mathbf{v}_{2} \Longleftrightarrow \mathbf{u}_{1}-\mathbf{u}_{2}=\mathbf{v}_{2}-\mathbf{v}_{1}$.

Theorem $\operatorname{dim} U \oplus V=\operatorname{dim} U+\operatorname{dim} V$.
Proof: Pick a basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ for U and a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ for V. Then $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is a spanning set for $U \oplus V$. Linear independence of this set follows from the fact that $U \cap V=\{\mathbf{0}\}$.

Theorem Let V be a subspace of \mathbb{R}^{n}. Then $\mathbb{R}^{n}=V \oplus V^{\perp}$.

Proof: $V \perp V^{\perp} \Longrightarrow V \cap V^{\perp}=\{\mathbf{0}\} \Longrightarrow V \oplus V^{\perp}$ is well defined. Since $\operatorname{dim} V \oplus V^{\perp}=\operatorname{dim} V+\operatorname{dim} V^{\perp}=n$, it follows that $V \oplus V^{\perp}$ is the entire space \mathbb{R}^{n}.

Given a vector $\mathbf{x} \in \mathbb{R}^{n}$ and a subspace $V \subset \mathbb{R}^{n}$, there exists a unique representation $\mathbf{x}=\mathbf{p}+\mathbf{o}$ such that $\mathbf{p} \in V$ while $\mathbf{o} \perp V$. The vector \mathbf{p} is called the orthogonal projection of \mathbf{x} onto V.

Problem. Find the orthogonal projection of the vector $\mathbf{x}=(2,1,0)$ onto the plane Π spanned by vectors $\mathbf{v}_{1}=(1,0,-2)$ and $\mathbf{v}_{2}=(0,1,1)$.

We have $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in \Pi$ and $\mathbf{o} \perp \Pi$. Then $\mathbf{p}=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}$ for some $\alpha, \beta \in \mathbb{R}$. Also, $\mathbf{o} \cdot \mathbf{v}_{1}=\mathbf{o} \cdot \mathbf{v}_{2}=0$. Note that
$\mathbf{o} \cdot \mathbf{v}_{i}=\left(\mathbf{x}-\alpha \mathbf{v}_{1}-\beta \mathbf{v}_{2}\right) \cdot \mathbf{v}_{i}=\mathbf{x} \cdot \mathbf{v}_{i}-\alpha\left(\mathbf{v}_{1} \cdot \mathbf{v}_{i}\right)-\beta\left(\mathbf{v}_{2} \cdot \mathbf{v}_{i}\right)$.
$\left\{\begin{array}{l}\alpha\left(\mathbf{v}_{1} \cdot \mathbf{v}_{1}\right)+\beta\left(\mathbf{v}_{2} \cdot \mathbf{v}_{1}\right)=\mathbf{x} \cdot \mathbf{v}_{1} \\ \alpha\left(\mathbf{v}_{1} \cdot \mathbf{v}_{2}\right)+\beta\left(\mathbf{v}_{2} \cdot \mathbf{v}_{2}\right)=\mathbf{x} \cdot \mathbf{v}_{2}\end{array}\right.$
$\Longleftrightarrow\left\{\begin{array}{l}5 \alpha-2 \beta=2 \\ -2 \alpha+2 \beta=1\end{array} \Longleftrightarrow\left\{\begin{array}{l}\alpha=1 \\ \beta=3 / 2\end{array}\right.\right.$
Thus $\mathbf{p}=\mathbf{v}_{1}+\frac{3}{2} \mathbf{v}_{2}=\left(1, \frac{3}{2},-\frac{1}{2}\right)$.

