Math 304–504 Linear Algebra

Lecture 24: Orthogonal subspaces.

Scalar product in \mathbb{R}^n

Definition. The scalar product of vectors $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ is $\boxed{\mathbf{x} \cdot \mathbf{y} = x_1y_1 + x_2y_2 + \dots + x_ny_n}$.

Properties of scalar product:

$$\begin{array}{ll} \mathbf{x} \cdot \mathbf{x} \geq \mathbf{0}, & \mathbf{x} \cdot \mathbf{x} = \mathbf{0} \quad \text{only if } \mathbf{x} = \mathbf{0} & (\text{positivity}) \\ \mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x} & (\text{symmetry}) \\ z(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z} & (\text{distributive law}) \\ (r\mathbf{x}) \cdot \mathbf{y} = r(\mathbf{x} \cdot \mathbf{y}) & (\text{homogeneity}) \end{array}$$

In particular, $\mathbf{x} \cdot \mathbf{y}$ is a **bilinear** function (i.e., it is both a linear function of \mathbf{x} and a linear function of \mathbf{y}).

Orthogonality

Definition 1. Vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y} = 0$.

Definition 2. A vector $\mathbf{x} \in \mathbb{R}^n$ is said to be orthogonal to a nonempty set $Y \subset \mathbb{R}^n$ (denoted $\mathbf{x} \perp Y$) if $\mathbf{x} \cdot \mathbf{y} = 0$ for any $\mathbf{y} \in Y$.

Definition 3. Nonempty sets $X, Y \subset \mathbb{R}^n$ are said to be **orthogonal** (denoted $X \perp Y$) if $\mathbf{x} \cdot \mathbf{y} = 0$ for any $\mathbf{x} \in X$ and $\mathbf{y} \in Y$. Examples in \mathbb{R}^3 . • The line x = y = 0 is orthogonal to the line y = z = 0. Indeed, if $\mathbf{v} = (0, 0, z)$ and $\mathbf{w} = (x, 0, 0)$ then $\mathbf{v} \cdot \mathbf{w} = 0$.

• The line x = y = 0 is orthogonal to the plane z = 0.

Indeed, if $\mathbf{v} = (0, 0, z)$ and $\mathbf{w} = (x, y, 0)$ then $\mathbf{v} \cdot \mathbf{w} = 0$.

• The line x = y = 0 is not orthogonal to the plane z = 1.

The vector $\mathbf{v} = (0, 0, 1)$ belongs to both the line and the plane, and $\mathbf{v} \cdot \mathbf{v} = 1 \neq 0$.

• The plane z = 0 is not orthogonal to the plane y = 0.

The vector $\mathbf{v} = (1,0,0)$ belongs to both planes and $\mathbf{v} \cdot \mathbf{v} = 1 \neq 0$.

Proposition 1 If $X, Y \in \mathbb{R}^n$ are orthogonal sets then either they are disjoint or $X \cap Y = \{\mathbf{0}\}$.

 $\textit{Proof:} \quad \mathbf{v} \in X \cap Y \implies \mathbf{v} \perp \mathbf{v} \implies \mathbf{v} \cdot \mathbf{v} = \mathbf{0} \implies \mathbf{v} = \mathbf{0}.$

Proposition 2 Let V be a subspace of \mathbb{R}^n and S be a spanning set for V. Then for any $\mathbf{x} \in \mathbb{R}^n$

$$\mathbf{x} \perp S \implies \mathbf{x} \perp V.$$

Proof: Any $\mathbf{v} \in V$ is represented as $\mathbf{v} = a_1 \mathbf{v}_1 + \cdots + a_k \mathbf{v}_k$, where $\mathbf{v}_i \in S$ and $a_i \in \mathbb{R}$. If $\mathbf{x} \perp S$ then

$$\mathbf{x} \cdot \mathbf{v} = a_1(\mathbf{x} \cdot \mathbf{v}_1) + \cdots + a_k(\mathbf{x} \cdot \mathbf{v}_k) = 0 \implies \mathbf{x} \perp \mathbf{v}.$$

Example. The vector $\mathbf{v} = (1, 1, 1)$ is orthogonal to the plane spanned by vectors $\mathbf{w}_1 = (2, -3, 1)$ and $\mathbf{w}_2 = (0, 1, -1)$ (because $\mathbf{v} \cdot \mathbf{w}_1 = \mathbf{v} \cdot \mathbf{w}_2 = 0$).

Orthogonal complement

Definition. Let $S \subset \mathbb{R}^n$. The **orthogonal** complement of S, denoted S^{\perp} , is the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ that are orthogonal to S. That is, S^{\perp} is the largest subset of \mathbb{R}^n orthogonal to S.

Theorem 1 S^{\perp} is a subspace of \mathbb{R}^n .

Note that $S \subset (S^{\perp})^{\perp}$, hence $\operatorname{Span}(S) \subset (S^{\perp})^{\perp}$.

Theorem 2 $(S^{\perp})^{\perp} = \text{Span}(S)$. In particular, for any subspace V we have $(V^{\perp})^{\perp} = V$.

Example. Consider a line $L = \{(x, 0, 0) \mid x \in \mathbb{R}\}$ and a plane $\Pi = \{(0, y, z) \mid y, z \in \mathbb{R}\}$ in \mathbb{R}^3 . Then $L^{\perp} = \Pi$ and $\Pi^{\perp} = L$.

Fundamental subspaces

Definition. Given an $m \times n$ matrix A, let $N(A) = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \},$ $R(A) = \{ \mathbf{b} \in \mathbb{R}^m \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^n \}.$

R(A) is the range of a linear mapping $L : \mathbb{R}^n \to \mathbb{R}^m$, $L(\mathbf{x}) = A\mathbf{x}$. N(A) is the kernel of L.

Also, N(A) is the nullspace of the matrix A while R(A) is the column space of A. The row space of A is $R(A^{T})$.

The subspaces $N(A), R(A^T) \subset \mathbb{R}^n$ and $R(A), N(A^T) \subset \mathbb{R}^m$ are **fundamental subspaces** associated to the matrix A.

Theorem $N(A) = R(A^T)^{\perp}$, $N(A^T) = R(A)^{\perp}$. That is, the nullspace of a matrix is the orthogonal complement of its row space.

Proof: The equality $A\mathbf{x} = \mathbf{0}$ means that the vector \mathbf{x} is orthogonal to rows of the matrix A. Therefore $N(A) = S^{\perp}$, where S is the set of rows of A. It remains to note that $S^{\perp} = \operatorname{Span}(S)^{\perp} = R(A^{T})^{\perp}$.

Corollary Let V be a subspace of \mathbb{R}^n . Then dim $V + \dim V^{\perp} = n$.

Proof: Pick a basis $\mathbf{v}_1, \ldots, \mathbf{v}_k$ for V. Let A be the $k \times n$ matrix whose rows are vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$. Then $V = R(A^T)$ and $V^{\perp} = N(A)$. Consequently, dim V and dim V^{\perp} are rank and nullity of A. Therefore dim $V + \dim V^{\perp}$ equals the number of columns of A, which is n.

Direct sum

Definition. Let U, V be subspaces of a vector space W. We say that W is a **direct sum** of U and V (denoted $W = U \oplus V$) if any $\mathbf{w} \in W$ is uniquely represented as $\mathbf{w} = \mathbf{u} + \mathbf{v}$, where $\mathbf{u} \in U$ and $\mathbf{v} \in V$.

Remark. Given subspaces $U, V \subset W$, we can define a set $U + V = {\mathbf{u} + \mathbf{v} \mid \mathbf{u} \in U, \mathbf{v} \in V}$, which is also a subspace. However $U \oplus V$ may not be well defined.

Proposition The direct sum $U \oplus V$ is well defined if and only if $U \cap V = \{\mathbf{0}\}$.

Proof: $U \oplus V$ is well defined if for any $\mathbf{u}_1, \mathbf{u}_2 \in U$ and $\mathbf{v}_1, \mathbf{v}_2 \in V$ we have $\mathbf{u}_1 + \mathbf{v}_1 = \mathbf{u}_2 + \mathbf{v}_2 \implies \mathbf{u}_1 = \mathbf{u}_2$ and $\mathbf{v}_1 = \mathbf{v}_2$. Now note that $\mathbf{u}_1 + \mathbf{v}_1 = \mathbf{u}_2 + \mathbf{v}_2 \iff \mathbf{u}_1 - \mathbf{u}_2 = \mathbf{v}_2 - \mathbf{v}_1$.

Theorem dim $U \oplus V = \dim U + \dim V$.

Proof: Pick a basis $\mathbf{u}_1, \ldots, \mathbf{u}_k$ for U and a basis $\mathbf{v}_1, \ldots, \mathbf{v}_m$ for V. Then $\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{v}_1, \ldots, \mathbf{v}_m$ is a spanning set for $U \oplus V$. Linear independence of this set follows from the fact that $U \cap V = \{\mathbf{0}\}$.

Theorem Let *V* be a subspace of \mathbb{R}^n . Then $\mathbb{R}^n = V \oplus V^{\perp}$.

Proof: $V \perp V^{\perp} \implies V \cap V^{\perp} = \{\mathbf{0}\} \implies V \oplus V^{\perp}$ is well defined. Since dim $V \oplus V^{\perp} = \dim V + \dim V^{\perp} = n$, it follows that $V \oplus V^{\perp}$ is the entire space \mathbb{R}^n .

Given a vector $\mathbf{x} \in \mathbb{R}^n$ and a subspace $V \subset \mathbb{R}^n$, there exists a unique representation $\mathbf{x} = \mathbf{p} + \mathbf{o}$ such that $\mathbf{p} \in V$ while $\mathbf{o} \perp V$. The vector \mathbf{p} is called the **orthogonal projection** of \mathbf{x} onto V. **Problem.** Find the orthogonal projection of the vector $\mathbf{x} = (2, 1, 0)$ onto the plane Π spanned by vectors $\mathbf{v}_1 = (1, 0, -2)$ and $\mathbf{v}_2 = (0, 1, 1)$.

We have $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in \Pi$ and $\mathbf{o} \perp \Pi$. Then $\mathbf{p} = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2$ for some $\alpha, \beta \in \mathbb{R}$. Also, $\mathbf{o} \cdot \mathbf{v}_1 = \mathbf{o} \cdot \mathbf{v}_2 = 0$. Note that $\mathbf{o} \cdot \mathbf{v}_i = (\mathbf{x} - \alpha \mathbf{v}_1 - \beta \mathbf{v}_2) \cdot \mathbf{v}_i = \mathbf{x} \cdot \mathbf{v}_i - \alpha (\mathbf{v}_1 \cdot \mathbf{v}_i) - \beta (\mathbf{v}_2 \cdot \mathbf{v}_i).$ $\begin{cases} \alpha(\mathbf{v}_1 \cdot \mathbf{v}_1) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_1) = \mathbf{x} \cdot \mathbf{v}_1 \\ \alpha(\mathbf{v}_1 \cdot \mathbf{v}_2) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_2) = \mathbf{x} \cdot \mathbf{v}_2 \end{cases}$ $\iff \begin{cases} 5\alpha - 2\beta = 2\\ -2\alpha + 2\beta = 1 \end{cases} \iff \begin{cases} \alpha = 1\\ \beta = 3/2 \end{cases}$

Thus $\mathbf{p} = \mathbf{v}_1 + \frac{3}{2}\mathbf{v}_2 = (1, \frac{3}{2}, -\frac{1}{2}).$