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Linear Algebra

Lecture 25:
Least squares problems.



Orthogonality

Definition 1. Vectors x, y ∈ R
n are said to be

orthogonal (denoted x ⊥ y) if x · y = 0.

Definition 2. A vector x ∈ R
n is said to be

orthogonal to a nonempty set Y ⊂ R
n (denoted

x ⊥ Y ) if x · y = 0 for any y ∈ Y .

Definition 3. Nonempty sets X , Y ⊂ R
n are said

to be orthogonal (denoted X ⊥ Y ) if x · y = 0
for any x ∈ X and y ∈ Y .



Orthogonal complement

Definition. Let S be a subset of R
n. The

orthogonal complement of S , denoted S⊥, is the
set of all vectors x ∈ R

n that are orthogonal to S .

Theorem Let V be a subspace of R
n. Then

(i) V⊥ is also a subspace of R
n;

(ii) V ∩ V⊥ = {0};
(iii) dim V + dimV⊥ = n;
(iv) R

n = V ⊕ V⊥, that is, any vector x ∈ R
n is

uniquely represented as x = p + o, where p ∈ V

and o ∈ V⊥.

In the above expansion, p is called the orthogonal
projection of the vector x onto the subspace V .



Let V be a subspace of R
n. Let p be the

orthogonal projection of a vector x ∈ R
n onto V .

Theorem ‖x− v‖ > ‖x− p‖ for any v 6= p in V .

Proof: Let o = x − p, o1 = x − v, and
v1 = p − v. Then o1 = o + v1, v1 ∈ V , and

v1 6= 0. Since o ⊥ V , it follows that o · v1 = 0.

‖o1‖2 = o1 · o1 = (o + v1) · (o + v1)
= o · o + v1 · o + o · v1 + v1 · v1

= o · o + v1 · v1 = ‖o‖2 + ‖v1‖2 > ‖o‖2.

Thus ‖x − p‖ = min
v∈V

‖x − v‖ is the distance from

the vector x to the subspace V .



Problem. Let Π be the plane spanned by vectors
v1 = (1, 1, 0) and v2 = (0, 1, 1).
(i) Find the orthogonal projection of the vector

x = (2, 0, 1) onto the plane Π.
(ii) Find the distance from x to Π.

We have x = p + o, where p ∈ Π and o ⊥ Π.

Then the orthogonal projection of x onto Π is p and
the distance from x to Π is ‖o‖.
We have p = αv1 + βv2 for some α, β ∈ R.
Then o = x − p = x − αv1 − βv2.
{

o · v1 = 0
o · v2 = 0

⇐⇒
{

α(v1 · v1) + β(v2 · v1) = x · v1

α(v1 · v2) + β(v2 · v2) = x · v2



x = (4, 0,−1), v1 = (1, 1, 0), v2 = (0, 1, 1)

{

α(v1 · v1) + β(v2 · v1) = x · v1

α(v1 · v2) + β(v2 · v2) = x · v2

⇐⇒
{

2α + β = 4
α + 2β = −1

⇐⇒
{

α = 3
β = −2

p = 3v1 − 2v2 = (3, 1,−2)

o = x − p = (1,−1, 1)

‖o‖ =
√

3



Overdetermined system of linear equations:






x + 2y = 3

3x + 2y = 5
x + y = 2.09

⇐⇒







x + 2y = 3

−4y = −4
−y = −0.91

No solution: inconsistent system

Assume that a solution (x0, y0) does exist but the
system is not quite accurate, namely, there may be

some errors in the right-hand sides.

Problem. Find a good approximation of (x0, y0).

One approach is the least squares fit. Namely, we

look for a pair (x , y) that minimizes the sum
(x + 2y − 3)2 + (3x + 2y − 5)2 + (x + y − 2.09)2.



Least squares solution

System of linear equations:














a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · · · · · · ·
am1x1 + am2x2 + · · · + amnxn = bm

⇐⇒ Ax = b

For any x ∈ R
n define a residual r(x) = b − Ax.

The least squares solution x to the system is the
one that minimizes ‖r(x)‖ (or, equivalently, ‖r(x)‖2).

‖r(x)‖2 =
m

∑

i=1

(ai1x1 + ai2x2 + · · · + ainxn − bi)
2



Let A be an m×n matrix and let b ∈ R
m.

Theorem A vector x̂ is a least squares solution of

the system Ax = b if and only if it is a solution of

the associated normal system ATAx = ATb.

Proof: Ax is an arbitrary vector in R(A), the column space of
A. Hence the length of r(x) = b− Ax is minimal if Ax is the
orthogonal projection of b onto R(A). That is, if r(x) is
orthogonal to R(A).

We know that R(A)⊥ = N(AT ), the nullspace of the
transpose matrix. Thus x̂ is a least squares solution if and
only if

AT r(x̂) = 0 ⇐⇒ AT (b − Ax̂) = 0 ⇐⇒ ATAx̂ = ATb.



Problem. Find the least squares solution to






x + 2y = 3
3x + 2y = 5

x + y = 2.09




1 2
3 2

1 1





(

x

y

)

=





3
5

2.09





(

1 3 1

2 2 1

)





1 2
3 2
1 1





(

x

y

)

=

(

1 3 1

2 2 1

)





3
5

2.09





(

11 9
9 9

) (

x

y

)

=

(

20.09
18.09

)

⇐⇒
{

x = 1
y = 1.01



Consider a system of linear equations Ax = b and

the associated normal system ATAx = ATb.

Theorem The normal system ATAx = ATb is
always consistent. Also, the following conditions are

equivalent:
(i) the least squares problem has a unique solution,

(ii) the system Ax = 0 has only zero solution,
(iii) columns of A are linearly independent.

Proof: x is a solution of the least squares problem if and only
if Ax is the orthogonal projection of b onto R(A). Clearly,
such x exists. If x1 and x2 are two solutions then Ax1 = Ax2

⇐⇒ A(x1 − x2) = 0.



Problem. Find the constant function that is the

least squares fit to the following data:

x 0 1 2 3

f (x) 1 0 1 2

f (x) = c =⇒















c = 1
c = 0
c = 1
c = 2

=⇒









1
1
1
1









(c) =









1
0
1
2









(1, 1, 1, 1)









1
1
1
1









(c) = (1, 1, 1, 1)









1
0
1
2









c = 1

4
(1 + 0 + 1 + 2) = 1 (mean arithmetic value)



Problem. Find the linear polynomial that is the

least squares fit to the following data:

x 0 1 2 3

f (x) 1 0 1 2

f (x) = c1 + c2x =⇒















c1 = 1
c1 + c2 = 0
c1 + 2c2 = 1
c1 + 3c2 = 2

=⇒









1 0
1 1
1 2
1 3









(

c1

c2

)

=









1
0
1
2









(

1 1 1 1
0 1 2 3

)









1 0
1 1
1 2
1 3









(

c1

c2

)

=

(

1 1 1 1
0 1 2 3

)









1
0
1
2









(

4 6
6 14

)(

c1

c2

)

=

(

4
8

)

⇐⇒
{

c1 = 2/5
c2 = 2/5


