Math 304–504 Linear Algebra

Lecture 25: Least squares problems.

Orthogonality

Definition 1. Vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are said to be **orthogonal** (denoted $x \perp y$) if $|x \cdot y = 0$.

Definition 2. A vector $\mathbf{x} \in \mathbb{R}^n$ is said to be orthogonal to a nonempty set $Y \subset \mathbb{R}^n$ (denoted $x \perp Y$) if $x \cdot y = 0$ for any $y \in Y$.

Definition 3. Nonempty sets $X, Y \subset \mathbb{R}^n$ are said to be **orthogonal** (denoted $X \perp Y$) if $\mathbf{x} \cdot \mathbf{y} = 0$ for any $x \in X$ and $y \in Y$.

Orthogonal complement

Definition. Let S be a subset of \mathbb{R}^n . The $\boldsymbol{\mathsf{orthogonal}}$ complement of $\mathcal{S},$ denoted $\mathcal{S}^{\perp},$ is the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ that are orthogonal to S.

Theorem Let V be a subspace of \mathbb{R}^n . Then (i) V^{\perp} is also a subspace of \mathbb{R}^{n} ; (ii) $V \cap V^{\perp} = \{0\};$ (iii) dim $V +$ dim $V^{\perp} = n$; (iv) $\mathbb{R}^n = V \oplus V^{\perp}$, that is, any vector $\mathbf{x} \in \mathbb{R}^n$ is uniquely represented as $x = p + o$, where $p \in V$ and $\mathbf{o} \in V^{\perp}$.

In the above expansion, \bf{p} is called the **orthogonal projection** of the vector **x** onto the subspace V.

Let V be a subspace of \mathbb{R}^n . Let **p** be the orthogonal projection of a vector $\mathbf{x} \in \mathbb{R}^n$ onto V. **Theorem** $\|\mathbf{x} - \mathbf{v}\| > \|\mathbf{x} - \mathbf{p}\|$ for any $\mathbf{v} \neq \mathbf{p}$ in V. *Proof:* Let $\mathbf{o} = \mathbf{x} - \mathbf{p}$, $\mathbf{o}_1 = \mathbf{x} - \mathbf{v}$, and $\mathbf{v}_1 = \mathbf{p} - \mathbf{v}$. Then $\mathbf{o}_1 = \mathbf{o} + \mathbf{v}_1$, $\mathbf{v}_1 \in V$, and $v_1 \neq 0$. Since $\mathbf{o} \perp V$, it follows that $\mathbf{o} \cdot \mathbf{v}_1 = 0$. $\|\mathbf{o}_1\|^2 = \mathbf{o}_1 \cdot \mathbf{o}_1 = (\mathbf{o} + \mathbf{v}_1) \cdot (\mathbf{o} + \mathbf{v}_1)$ $=$ 0 \cdot 0 $+$ V₁ \cdot 0 $+$ 0 \cdot V₁ $+$ V₁ \cdot V₁ $= \mathbf{o} \cdot \mathbf{o} + \mathbf{v}_1 \cdot \mathbf{v}_1 = ||\mathbf{o}||^2 + ||\mathbf{v}_1||^2 > ||\mathbf{o}||^2.$

Thus $\|\mathbf{x} - \mathbf{p}\| = \min_{\mathbf{v} \in V} \|\mathbf{x} - \mathbf{v}\|$ is the distance from the vector x to the subspace V .

Problem. Let Π be the plane spanned by vectors ${\bf v}_1 = (1, 1, 0)$ and ${\bf v}_2 = (0, 1, 1)$. (i) Find the orthogonal projection of the vector $\mathbf{x} = (2, 0, 1)$ onto the plane Π . (ii) Find the distance from x to Π .

We have $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in \Pi$ and $\mathbf{o} \perp \Pi$. Then the orthogonal projection of **x** onto Π is **p** and the distance from **x** to Π is $\|\mathbf{o}\|$.

We have $\mathbf{p} = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2$ for some $\alpha, \beta \in \mathbb{R}$. Then $\mathbf{o} = \mathbf{x} - \mathbf{p} = \mathbf{x} - \alpha \mathbf{v}_1 - \beta \mathbf{v}_2$.

$$
\left\{ \begin{array}{ll} \textbf{o} \cdot \textbf{v}_1 = 0 \\ \textbf{o} \cdot \textbf{v}_2 = 0 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{ll} \alpha(\textbf{v}_1 \cdot \textbf{v}_1) + \beta(\textbf{v}_2 \cdot \textbf{v}_1) = \textbf{x} \cdot \textbf{v}_1 \\ \alpha(\textbf{v}_1 \cdot \textbf{v}_2) + \beta(\textbf{v}_2 \cdot \textbf{v}_2) = \textbf{x} \cdot \textbf{v}_2 \end{array} \right.
$$

$\mathbf{x} = (4, 0, -1), \mathbf{v}_1 = (1, 1, 0), \mathbf{v}_2 = (0, 1, 1)$

$$
\begin{cases}\n\alpha(\mathbf{v}_1 \cdot \mathbf{v}_1) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_1) = \mathbf{x} \cdot \mathbf{v}_1 \\
\alpha(\mathbf{v}_1 \cdot \mathbf{v}_2) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_2) = \mathbf{x} \cdot \mathbf{v}_2\n\end{cases}
$$
\n
$$
\iff \begin{cases}\n2\alpha + \beta = 4 \\
\alpha + 2\beta = -1\n\end{cases} \iff \begin{cases}\n\alpha = 3 \\
\beta = -2\n\end{cases}
$$
\n
$$
\mathbf{p} = 3\mathbf{v}_1 - 2\mathbf{v}_2 = (3, 1, -2)
$$
\n
$$
\mathbf{o} = \mathbf{x} - \mathbf{p} = (1, -1, 1)
$$
\n
$$
\|\mathbf{o}\| = \sqrt{3}
$$

Overdetermined system of linear equations:

$$
\begin{cases}\n x + 2y = 3 \\
 3x + 2y = 5 \\
 x + y = 2.09\n\end{cases}\n\Longleftrightarrow\n\begin{cases}\n x + 2y = 3 \\
 -4y = -4 \\
 -y = -0.91\n\end{cases}
$$

No solution: inconsistent system

Assume that a solution (x_0, y_0) does exist but the system is not quite accurate, namely, there may be some errors in the right-hand sides.

Problem. Find a good approximation of (x_0, y_0) .

One approach is the least squares fit. Namely, we look for a pair (x, y) that minimizes the sum $(x+2y-3)^2 + (3x+2y-5)^2 + (x+y-2.09)^2$.

Least squares solution

System of linear equations: $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$ · · · · · · · · · $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$ $\iff Ax = b$

For any $\mathbf{x} \in \mathbb{R}^n$ define a **residual** $r(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$. The **least squares solution** x to the system is the one that minimizes $\Vert r(\mathbf{x}) \Vert$ (or, equivalently, $\Vert r(\mathbf{x}) \Vert^2$).

$$
||r(\mathbf{x})||^2 = \sum_{i=1}^m (a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n - b_i)^2
$$

Let A be an $m \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^m$.

Theorem A vector \hat{x} is a least squares solution of the system $Ax = b$ if and only if it is a solution of the associated **normal system** $\boxed{A^T A\mathbf{x} = A^T \mathbf{b}}.$

Proof: Ax is an arbitrary vector in $R(A)$, the column space of A. Hence the length of $r(x) = b - Ax$ is minimal if Ax is the orthogonal projection of **b** onto $R(A)$. That is, if $r(x)$ is orthogonal to $R(A)$.

We know that $\, R(A)^{\perp} = N(A^{\mathcal{T}}),\,$ the nullspace of the transpose matrix. Thus \hat{x} is a least squares solution if and only if

$$
A^T r(\hat{\mathbf{x}}) = \mathbf{0} \iff A^T(\mathbf{b} - A\hat{\mathbf{x}}) = \mathbf{0} \iff A^T A \hat{\mathbf{x}} = A^T \mathbf{b}.
$$

Problem. Find the least squares solution to

$$
\begin{cases}\n x + 2y = 3 \\
 3x + 2y = 5 \\
 x + y = 2.09\n\end{cases}
$$
\n
$$
\begin{pmatrix}\n 1 & 2 \\
 3 & 2 \\
 1 & 1\n\end{pmatrix}\n\begin{pmatrix}\n x \\
 y\n\end{pmatrix}\n= \n\begin{pmatrix}\n 3 \\
 5 \\
 2.09\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n 1 & 3 & 1 \\
 2 & 2 & 1\n\end{pmatrix}\n\begin{pmatrix}\n 1 & 2 \\
 3 & 2 \\
 1 & 1\n\end{pmatrix}\n\begin{pmatrix}\n x \\
 y\n\end{pmatrix}\n= \n\begin{pmatrix}\n 1 & 3 & 1 \\
 2 & 2 & 1\n\end{pmatrix}\n\begin{pmatrix}\n 3 \\
 5 \\
 2.09\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n 11 & 9 \\
 9 & 9\n\end{pmatrix}\n\begin{pmatrix}\n x \\
 y\n\end{pmatrix}\n= \n\begin{pmatrix}\n 20.09 \\
 18.09\n\end{pmatrix}\n\iff\n\begin{cases}\n x = 1 \\
 y = 1.01\n\end{cases}
$$

Consider a system of linear equations $Ax = b$ and the associated normal system $A^T A\mathbf{x} = A^T \mathbf{b}$.

Theorem The normal system $A^T A x = A^T b$ is always consistent. Also, the following conditions are equivalent:

(i) the least squares problem has a unique solution, (ii) the system $Ax = 0$ has only zero solution, (iii) columns of A are linearly independent.

Proof: x is a solution of the least squares problem if and only if A **x** is the orthogonal projection of **b** onto $R(A)$. Clearly, such x exists. If x_1 and x_2 are two solutions then $Ax_1 = Ax_2$ $\iff A(\mathbf{x}_1 - \mathbf{x}_2) = \mathbf{0}.$

Problem. Find the constant function that is the least squares fit to the following data:

$$
\begin{array}{c}\nx & 0 & 1 & 2 & 3 \\
\hline\nf(x) & 1 & 0 & 1 & 2 \\
\end{array}
$$
\n
$$
f(x) = c \implies \begin{cases}\nc = 1 \\
c = 0 \\
c = 2\n\end{cases} \implies \begin{pmatrix} 1 \\
1 \\
1 \\
1\n\end{pmatrix} (c) = \begin{pmatrix} 1 \\
0 \\
1 \\
2\n\end{pmatrix}
$$
\n
$$
(1, 1, 1, 1) \begin{pmatrix} 1 \\
1 \\
1 \\
1\n\end{pmatrix} (c) = (1, 1, 1, 1) \begin{pmatrix} 1 \\
0 \\
1 \\
2\n\end{pmatrix}
$$

 $c=\frac{1}{4}$ $\frac{1}{4}(1+0+1+2)=1\quad \text{ (mean arithmetic value)}$ Problem. Find the linear polynomial that is the least squares fit to the following data:

$$
\begin{array}{c|c|c|c|c}\nx & 0 & 1 & 2 & 3 \\
\hline\nf(x) & 1 & 0 & 1 & 2\n\end{array}
$$

$$
\begin{pmatrix}\n1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3\n\end{pmatrix}\n\begin{pmatrix}\n1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3\n\end{pmatrix}\n\begin{pmatrix}\nc_1 \\
c_2\n\end{pmatrix} =\n\begin{pmatrix}\n1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3\n\end{pmatrix}\n\begin{pmatrix}\n1 \\
0 \\
1 \\
2\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n4 & 6 \\
6 & 14\n\end{pmatrix}\n\begin{pmatrix}\nc_1 \\
c_2\n\end{pmatrix} =\n\begin{pmatrix}\n4 \\
8\n\end{pmatrix} \iff \begin{cases}\nc_1 = 2/5 \\
c_2 = 2/5\n\end{cases}
$$