Math 304–504

Lecture 28:

Orthogonal sets.

Linear Algebra

The Gram-Schmidt process.

Orthogonal sets

Let V be an inner product space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\| \cdot \|$.

Definition. A nonempty set $S \subset V$ of nonzero vectors is called an **orthogonal set** if all vectors in S are mutually orthogonal. That is, $\mathbf{0} \notin S$ and $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ for any $\mathbf{x}, \mathbf{y} \in S$, $\mathbf{x} \neq \mathbf{y}$.

An orthogonal set $S \subset V$ is called **orthonormal** if $\|\mathbf{x}\| = 1$ for any $\mathbf{x} \in S$.

Remark. Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ form an orthonormal set if and only if

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Examples. \bullet $V = \mathbb{R}^n$, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}$. The standard basis $\mathbf{e}_1 = (1, 0, 0, \dots, 0)$,

The standard basis $\mathbf{e}_1 = (1, 0, 0, ..., 0)$, $\mathbf{e}_2 = (0, 1, 0, ..., 0)$, ..., $\mathbf{e}_n = (0, 0, 0, ..., 1)$. It is an orthonormal set.

•
$$V = \mathbb{R}^3$$
, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}$.

$$\mathbf{v}_1 = (3, 5, 4), \ \mathbf{v}_2 = (3, -5, 4), \ \mathbf{v}_3 = (4, 0, -3).$$

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$$
, $\mathbf{v}_1 \cdot \mathbf{v}_3 = 0$, $\mathbf{v}_2 \cdot \mathbf{v}_3 = 0$, $\mathbf{v}_1 \cdot \mathbf{v}_1 = 50$, $\mathbf{v}_2 \cdot \mathbf{v}_2 = 50$, $\mathbf{v}_3 \cdot \mathbf{v}_3 = 25$. Thus the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is orthogonal but not

Thus the set $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ is orthogonal but not orthonormal. An orthonormal set is formed by normalized vectors $\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$, $\mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$, $\mathbf{w}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_2\|}$.

• $V = C[-\pi, \pi], \langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx.$

 $f_1(x) = \sin x$, $f_2(x) = \sin 2x$, ..., $f_n(x) = \sin nx$, ...

$$t_1(x) = \sin x, \ t_2(x) = \sin 2x, \dots, \ t_n(x) = \sin nx, \dots$$

 $\langle f_m, f_n \rangle = \int_{-\infty}^{\infty} \sin(mx) \sin(nx) dx$

 $= \int_{-\pi}^{\pi} \frac{1}{2} (\cos(mx - nx) - \cos(mx + nx)) dx.$

 $\int_{-\infty}^{\infty} \cos(kx) \, dx = \frac{\sin(kx)}{k} \Big|_{x=-\pi}^{\pi} = 0 \quad \text{if} \quad k \in \mathbb{Z}, \ k \neq 0.$

 $k=0 \implies \int_{-\infty}^{\infty} \cos(kx) dx = \int_{-\infty}^{\infty} dx = 2\pi.$

$$\langle f_m, f_n \rangle = \frac{1}{2} \int_{-\pi}^{\pi} \left(\cos(m-n)x - \cos(m+n)x \right) dx$$

$$= \begin{cases} \pi & \text{if } m=n \\ 0 & \text{if } m \neq n \end{cases}$$

Thus the set $\{f_1, f_2, f_3, ...\}$ is orthogonal but not orthonormal.

It is orthonormal with respect to a scaled inner product

$$\langle\!\langle f,g \rangle\!\rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) dx.$$

${\bf Orthogonality} \implies {\bf linear \ independence}$

Theorem Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are nonzero vectors that form an orthogonal set. Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Proof: Suppose $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \cdots + t_k\mathbf{v}_k = \mathbf{0}$ for some $t_1, t_2, \dots, t_k \in \mathbb{R}$.

Then for any index $1 \le i \le k$ we have

$$\langle t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + \cdots + t_k \mathbf{v}_k, \mathbf{v}_i \rangle = \langle \mathbf{0}, \mathbf{v}_i \rangle = 0.$$

$$\implies t_1 \langle \mathbf{v}_1, \mathbf{v}_i \rangle + t_2 \langle \mathbf{v}_2, \mathbf{v}_i \rangle + \cdots + t_k \langle \mathbf{v}_k, \mathbf{v}_i \rangle = 0$$

By orthogonality, $t_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle = 0 \implies t_i = 0$.

Orthonormal bases

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be an orthonormal basis for an inner product space V.

Theorem Let $\mathbf{x} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_n$ and $\mathbf{y} = y_1 \mathbf{v}_1 + y_2 \mathbf{v}_2 + \dots + y_n \mathbf{v}_n$, where $x_i, y_j \in \mathbb{R}$. Then (i) $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$, (ii) $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$.

Proof: (ii) follows from (i) when y = x.

$$\langle \mathbf{x}, \mathbf{y} \rangle = \left\langle \sum_{i=1}^{n} x_{i} \mathbf{v}_{i}, \sum_{j=1}^{n} y_{j} \mathbf{v}_{j} \right\rangle = \sum_{i=1}^{n} x_{i} \left\langle \mathbf{v}_{i}, \sum_{j=1}^{n} y_{j} \mathbf{v}_{j} \right\rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle = \sum_{i=1}^{n} x_{i} y_{i}.$$

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for an inner product space V.

Theorem If the basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal set then for any $\mathbf{x} \in V$

$$\mathbf{x} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n.$$

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthonormal set then $\mathbf{x} = \langle \mathbf{x}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{x}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \dots + \langle \mathbf{x}, \mathbf{v}_n \rangle \mathbf{v}_n$.

Proof: We have that
$$\mathbf{x} = x_1 \mathbf{v}_1 + \dots + x_n \mathbf{v}_n$$
.
 $\implies \langle \mathbf{x}, \mathbf{v}_i \rangle = \langle x_1 \mathbf{v}_1 + \dots + x_n \mathbf{v}_n, \mathbf{v}_i \rangle, \quad 1 \le i \le n$.
 $\implies \langle \mathbf{x}, \mathbf{v}_i \rangle = x_1 \langle \mathbf{v}_1, \mathbf{v}_i \rangle + \dots + x_n \langle \mathbf{v}_n, \mathbf{v}_i \rangle$

 $\implies \langle \mathbf{x}, \mathbf{v}_i \rangle = x_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle.$

Let V be a vector space with an inner product. Suppose that $\mathbf{v}_1, \dots, \mathbf{v}_n \in V$ are nonzero vectors that form an orthogonal set. Given $\mathbf{x} \in V$, let

$$\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \cdots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n, \quad \mathbf{o} = \mathbf{x} - \mathbf{p}.$$

Let W denote the span of $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

Theorem (a)
$$\mathbf{o} \perp \mathbf{w}$$
 for all $\mathbf{w} \in W$ (denoted $\mathbf{o} \perp W$). (b) $\|\mathbf{o}\| = \|\mathbf{x} - \mathbf{p}\| = \min_{\mathbf{w} \in W} \|\mathbf{x} - \mathbf{w}\|$.

Thus **p** is the **orthogonal projection** of the vector **x** on the subspace W. Also, **p** is closer to **x** than any other vector in W, and $\|\mathbf{o}\| = \operatorname{dist}(\mathbf{x}, \mathbf{p})$ is the **distance** from **x** to W.

Orthogonalization

Let V be a vector space with an inner product. Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for V. Let

$$\mathbf{v}_1=\mathbf{x}_1$$
,

$$\mathbf{v}_2 = \mathbf{x}_2 - rac{\langle \mathbf{x}_2, \mathbf{v}_1
angle}{\langle \mathbf{v}_1, \mathbf{v}_1
angle} \mathbf{v}_1$$
 ,

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{2} \rangle}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2},$$

$$\vdots$$

$$\mathbf{v}_{n} = \mathbf{x}_{n} - \frac{\langle \mathbf{x}_{n}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \dots - \frac{\langle \mathbf{x}_{n}, \mathbf{v}_{n-1} \rangle}{\langle \mathbf{v}_{n-1}, \mathbf{v}_{n-1} \rangle} \mathbf{v}_{n-1}.$$

is called the **Gram-Schmidt process**.

Then
$$\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$$
 is an orthogonal basis for V .
The orthogonalization of a basis as described above

Normalization

Let V be a vector space with an inner product. Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V.

$$\text{Let } \mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}, \ \mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}, \dots, \ \mathbf{w}_n = \frac{\mathbf{v}_n}{\|\mathbf{v}_n\|}.$$

Then $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n$ is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with an inner product may or may not have an orthonormal basis.

Problem. Let Π be the plane in \mathbb{R}^3 spanned by vectors $\mathbf{x}_1 = (1, 2, 2)$ and $\mathbf{x}_2 = (-1, 0, 2)$.

(i) Find an orthonormal basis for Π . (ii) Extend it to an orthonormal basis for \mathbb{R}^3 .

 $\mathbf{x}_1, \mathbf{x}_2$ is a basis for the plane Π . We can extend it to a basis for \mathbb{R}^3 by adding one vector from the standard basis. For instance, vectors $\mathbf{x}_1, \mathbf{x}_2$, and $\mathbf{x}_3 = (0,0,1)$ form a basis for \mathbb{R}^3 because

$$\begin{vmatrix} 1 & 2 & 2 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -1 & 0 \end{vmatrix} = 2 \neq 0.$$

Using the Gram-Schmidt process, we orthogonalize the basis $\mathbf{x}_1 = (1, 2, 2), \ \mathbf{x}_2 = (-1, 0, 2), \ \mathbf{x}_3 = (0, 0, 1)$:

$$\mathbf{v}_1 = \mathbf{x}_1 = (1, 2, 2),$$
 $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1 \rangle} \mathbf{v}_1 = (-1, 0, 2) - \frac{3}{2} (1, 2, 2)$

$$egin{align} \mathbf{v}_1 &= \mathbf{x}_1 = (1,2,2), \ \mathbf{v}_2 &= \mathbf{x}_2 - rac{\langle \mathbf{x}_2, \mathbf{v}_1
angle}{\langle \mathbf{v}_1, \mathbf{v}_1
angle} \mathbf{v}_1 = (-1,0,2) - rac{3}{9}(1,2,2) \end{aligned}$$

$$egin{align} \mathbf{v}_2 &= \mathbf{x}_2 - rac{\langle \mathbf{x}_2, \mathbf{v}_1
angle}{\langle \mathbf{v}_1, \mathbf{v}_1
angle} \mathbf{v}_1 = (-1, 0, 2) - rac{3}{9} (1, 2, 2) \ &= (-4/3, -2/3, 4/3), \end{cases}$$

 $\mathbf{v}_3 = \mathbf{x}_3 - \frac{\langle \mathbf{x}_3, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{x}_3, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2$

 $=(0,0,1)-\frac{2}{6}(1,2,2)-\frac{4/3}{4}(-4/3,-2/3,4/3)$

= (2/9, -2/9, 1/9).

Now $\mathbf{v}_1=(1,2,2)$, $\mathbf{v}_2=(-4/3,-2/3,4/3)$, $\mathbf{v}_3=(2/9,-2/9,1/9)$ is an orthogonal basis for \mathbb{R}^3 while $\mathbf{v}_1,\mathbf{v}_2$ is an orthogonal basis for Π . It remains to normalize these vectors.

while
$$\mathbf{v}_1, \mathbf{v}_2$$
 is an orthogonal basis for II. It remains to normalize these vectors. $\langle \mathbf{v}_1, \mathbf{v}_1 \rangle = 9 \implies \|\mathbf{v}_1\| = 3$ $\langle \mathbf{v}_2, \mathbf{v}_2 \rangle = 4 \implies \|\mathbf{v}_2\| = 2$ $\langle \mathbf{v}_3, \mathbf{v}_3 \rangle = 1/9 \implies \|\mathbf{v}_3\| = 1/3$

$$\mathbf{w}_1 = \mathbf{v}_1/\|\mathbf{v}_1\| = (1/3, 2/3, 2/3) = \frac{1}{3}(1, 2, 2),$$
 $\mathbf{w}_2 = \mathbf{v}_2/\|\mathbf{v}_2\| = (-2/3, -1/3, 2/3) = \frac{1}{3}(-2, -1, 2),$

$$\mathbf{w}_3 = \mathbf{v}_3 / \|\mathbf{v}_3\| = (2/3, -2/3, 1/3) = \frac{1}{3}(2, -2, 1).$$

 $\mathbf{w}_1, \mathbf{w}_2$ is an orthonormal basis for Π . $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ is an orthonormal basis for \mathbb{R}^3 .