Linear Algebra **Lecture 30:**

Eigenvalues and eigenvectors. Characteristic equation.

Math 304-504

Eigenvalues and eigenvectors

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an **eigenvalue** of the matrix A if $A\mathbf{v} = \lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^n$.

The vector \mathbf{v} is called an **eigenvector** of A belonging to (or associated with) the eigenvalue λ .

Remarks. • Alternative notation: eigenvalue = characteristic value, eigenvector = characteristic vector.

• The zero vector is never considered an eigenvector.

Example. $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.

$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$
$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ -6 \end{pmatrix} = 3 \begin{pmatrix} 0 \\ -2 \end{pmatrix}.$$

Hence (1,0) is an eigenvector of A belonging to the eigenvalue 2, while (0,-2) is an eigenvector of A belonging to the eigenvalue 3.

Example.
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
.

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

Hence (1,1) is an eigenvector of A belonging to the eigenvalue 1, while (1,-1) is an eigenvector of A belonging to the eigenvalue -1.

Vectors $\mathbf{v}_1=(1,1)$ and $\mathbf{v}_2=(1,-1)$ form a basis for \mathbb{R}^2 . Consider a linear operator $L:\mathbb{R}^2\to\mathbb{R}^2$ given by $L(\mathbf{x})=A\mathbf{x}$. The matrix of L with respect to the basis $\mathbf{v}_1,\mathbf{v}_2$ is $B=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Let A be an $n \times n$ matrix. Consider a linear operator $L : \mathbb{R}^n \to \mathbb{R}^n$ given by $L(\mathbf{x}) = A\mathbf{x}$.

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a nonstandard basis for \mathbb{R}^n and B be the matrix of the operator L with respect to this basis.

Theorem The matrix B is diagonal if and only if vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are eigenvectors of A.

If this is the case, then the diagonal entries of the matrix B are the corresponding eigenvalues of A.

$$A\mathbf{v}_i = \lambda_i \mathbf{v}_i \iff B = \begin{pmatrix} \lambda_1 & & O \\ & \lambda_2 & \\ & & \ddots \\ O & & & \lambda_n \end{pmatrix}$$

Eigenspaces

Let A be an $n \times n$ matrix. Let \mathbf{v} be an eigenvector of A belonging to an eigenvalue λ .

Then
$$A\mathbf{v} = \lambda \mathbf{v} \implies A\mathbf{v} = (\lambda I)\mathbf{v} \implies (A - \lambda I)\mathbf{v} = \mathbf{0}$$
.
Hence $\mathbf{v} \in N(A - \lambda I)$, the nullspace of the matrix $A - \lambda I$.

Conversely, if $\mathbf{x} \in N(A - \lambda I)$ then $A\mathbf{x} = \lambda \mathbf{x}$. Thus the eigenvectors of A belonging to the eigenvalue λ are nonzero vectors from $N(A - \lambda I)$.

Definition. If $N(A - \lambda I) \neq \{0\}$ then it is called the **eigenspace** of the matrix A corresponding to the eigenvalue λ .

How to find eigenvalues and eigenvectors?

Theorem Given a square matrix A and a scalar λ , the following statements are equivalent:

- λ is an eigenvalue of A,
- $N(A \lambda I) \neq \{\mathbf{0}\},\$
- the matrix $A \lambda I$ is singular,
- $\det(A \lambda I) = 0$.

Definition. $det(A - \lambda I) = 0$ is called the **characteristic equation** of the matrix A.

Eigenvalues λ of A are roots of the characteristic equation. Associated eigenvectors of A are nonzero solutions of the equation $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

Example. $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

$$\det(A - \lambda I) = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix}$$

 $=(a-\lambda)(d-\lambda)-bc$

 $=\lambda^2-(a+d)\lambda+(ad-bc)$.

Example. $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$.

$$\det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{vmatrix}$$

$$= -\lambda^3 + c_1\lambda^2 - c_2\lambda + c_3,$$

where $c_1 = a_{11} + a_{22} + a_{33}$ (the *trace* of A), $c_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{32} \end{vmatrix},$ $c_3 = \det A$.

Theorem. Let $A = (a_{ij})$ be an $n \times n$ matrix.

Then $det(A - \lambda I)$ is a polynomial of λ of degree n:

$$\det(A - \lambda I) = (-1)^n \lambda^n + c_1 \lambda^{n-1} + \dots + c_{n-1} \lambda + c_n.$$

Furthermore, $(-1)^{n-1}c_1 = a_{11} + a_{22} + \cdots + a_{nn}$ and $c_n = \det A$.

Definition. The polynomial $p(\lambda) = \det(A - \lambda I)$ is called the **characteristic polynomial** of the matrix A.

Corollary Any $n \times n$ matrix has at most n eigenvalues.

Example. $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.

Characteristic equation:
$$\begin{vmatrix} 2-\lambda & 1 \\ 1 & 2-\lambda \end{vmatrix} = 0.$$

 $(A-I)\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

 $(2-\lambda)^2-1=0 \implies \lambda_1=1, \ \lambda_2=3.$

$$\iff \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff x+y=0.$$
 The general solution is $(-t,t)=t(-1,1),\ t\in\mathbb{R}.$ Thus $\mathbf{v}_1=(-1,1)$ is an eigenvector associated with the eigenvalue 1. The corresponding

eigenspace is the line spanned by \mathbf{v}_1 .

$$(A-3I)\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\iff \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff x - y = 0.$$

Thus $\mathbf{v}_2 = (1, 1)$ is an eigenvector associated with

The general solution is $(t,t)=t(1,1), t\in\mathbb{R}$.

the eigenvalue 3. The corresponding eigenspace is the line spanned by \mathbf{v}_2 .

Summary. $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.

- The matrix A has two eigenvalues: 1 and 3.
- The eigenspace of A associated with the eigenvalue 1 is the line t(-1,1).
- The eigenspace of A associated with the eigenvalue 3 is the line t(1,1).
- Eigenvectors $\mathbf{v}_1 = (-1,1)$ and $\mathbf{v}_2 = (1,1)$ of the matrix A form an orthogonal basis for \mathbb{R}^2 .
- Geometrically, the mapping $\mathbf{x} \mapsto A\mathbf{x}$ is a stretch by a factor of 3 away from the line x + y = 0 in the orthogonal direction.

Example.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

Characteristic equation:
$$\begin{vmatrix} 1-\lambda & 1 & -1 \\ 1 & 1-\lambda & 1 \\ 0 & 0 & 2-\lambda \end{vmatrix} = 0.$$

 $\begin{vmatrix} 1 & 1 & \lambda \\ 0 & 0 & 2 - \lambda \end{vmatrix}$ Expand the determinant by the 3rd row:

$$(2 - \lambda) \begin{vmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{vmatrix} = 0.$$

$$((1 - \lambda)^2 - 1)(2 - \lambda) = 0 \iff -\lambda(2 - \lambda)^2 = 0$$

$$\implies \lambda_1 = 0, \ \lambda_2 = 2.$$

$$A\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
Convert the matrix to reduced row echelon form

Convert the matrix to reduced row echelon form:

$$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$A\mathbf{x} = \mathbf{0} \iff \begin{cases} x + y = 0, \\ z = 0. \end{cases}$$

The general solution is (-t, t, 0) = t(-1, 1, 0), $t \in \mathbb{R}$. Thus $\mathbf{v}_1 = (-1, 1, 0)$ is an eigenvector associated with the eigenvalue 0. The corresponding eigenspace is the line spanned by \mathbf{v}_1 .

$$(A-2I)\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\iff \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \iff x - y + z = 0.$$

The general solution is x=t-s, y=t, z=s, where $t,s\in\mathbb{R}$. Equivalently,

$$\mathbf{x} = (t - s, t, s) = t(1, 1, 0) + s(-1, 0, 1).$$

Thus $\mathbf{v}_2 = (1, 1, 0)$ and $\mathbf{v}_3 = (-1, 0, 1)$ are eigenvectors associated with the eigenvalue 2.

The corresponding eigenspace is the plane spanned by \mathbf{v}_2 and \mathbf{v}_3 .

Summary.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

- The matrix A has two eigenvalues: 0 and 2.
- The eigenvalue 0 is *simple*: the corresponding eigenspace is a line.
- The eigenvalue 2 is of *multiplicity* 2: the corresponding eigenspace is a plane.
- Eigenvectors $\mathbf{v}_1 = (-1, 1, 0)$, $\mathbf{v}_2 = (1, 1, 0)$, and $\mathbf{v}_3 = (-1, 0, 1)$ of the matrix A form a basis for \mathbb{R}^3 .
- Geometrically, the map $\mathbf{x} \mapsto A\mathbf{x}$ is the projection on the plane $\mathrm{Span}(\mathbf{v}_2,\mathbf{v}_3)$ along the lines parallel to \mathbf{v}_1 with the subsequent scaling by a factor of 2.