Math 304-504
Linear Algebra
Lecture 31:
Bases of eigenvectors. Diagonalization.

Eigenvalues and eigenvectors of a matrix

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an eigenvalue of the matrix A if $A \mathbf{v}=\lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^{n}$. The vector \mathbf{v} is called an eigenvector of A belonging to (or associated with) the eigenvalue λ.

If λ is an eigenvalue of A then the nullspace $N(A-\lambda I)$, which is nontrivial, is called the eigenspace of A corresponding to λ. The eigenspace consists of all eigenvectors belonging to the eigenvalue λ plus the zero vector.

Characteristic equation

Definition. Given a square matrix A, the equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of A.
Eigenvalues λ of A are roots of the characteristic equation.

If A is an $n \times n$ matrix then $p(\lambda)=\operatorname{det}(A-\lambda I)$ is a polynomial of degree n. It is called the characteristic polynomial of A.

Example. $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

$$
\begin{aligned}
& \operatorname{det}(A-\lambda /)=\left|\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right| \\
& =(a-\lambda)(d-\lambda)-b c \\
& =\lambda^{2}-(a+d) \lambda+(a d-b c)
\end{aligned}
$$

Example. $\quad A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$.

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
a_{21} & a_{22}-\lambda & a_{23} \\
a_{31} & a_{32} & a_{33}-\lambda
\end{array}\right| \\
=-\lambda^{3}+c_{1} \lambda^{2}-c_{2} \lambda+c_{3},
\end{gathered}
$$

where $c_{1}=a_{11}+a_{22}+a_{33}$ (the trace of A),
$c_{2}=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|+\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{31} & a_{33}\end{array}\right|+\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|$,
$c_{3}=\operatorname{det} A$.

Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and $L: V \rightarrow V$ be a linear operator. A number λ is called an eigenvalue of the operator L if $L(\mathbf{v})=\lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector \mathbf{v} is called an eigenvector of L associated with the eigenvalue λ.
(If V is a functional space then eigenvectors are also called eigenfunctions.)

If $V=\mathbb{R}^{n}$ then the linear operator L is given by $L(\mathbf{x})=A \mathbf{x}$, where A is an $n \times n$ matrix.
In this case, eigenvalues and eigenvectors of the operator L are precisely eigenvalues and eigenvectors of the matrix A.

Eigenspaces

Let $L: V \rightarrow V$ be a linear operator.
For any $\lambda \in \mathbb{R}$, let V_{λ} denotes the set of all solutions of the equation $L(\mathbf{x})=\lambda \mathbf{x}$.
Then V_{λ} is a subspace of V since V_{λ} is the kernel of a linear operator given by $\mathbf{x} \mapsto L(\mathbf{x})-\lambda \mathbf{x}$.
V_{λ} minus the zero vector is the set of all eigenvectors of L associated with the eigenvalue λ. In particular, $\lambda \in \mathbb{R}$ is an eigenvalue of L if and only if $V_{\lambda} \neq\{\mathbf{0}\}$.
If $V_{\lambda} \neq\{\mathbf{0}\}$ then it is called the eigenspace of L corresponding to the eigenvalue λ.

Example. $\quad V=C^{\infty}(\mathbb{R}), D: V \rightarrow V, D f=f^{\prime}$.
A function $f \in C^{\infty}(\mathbb{R})$ is an eigenfunction of the operator D belonging to an eigenvalue λ if $f^{\prime}(x)=\lambda f(x)$ for all $x \in \mathbb{R}$.
It follows that $f(x)=c e^{\lambda x}$, where c is a nonzero constant.

Thus each $\lambda \in \mathbb{R}$ is an eigenvalue of D.
The corresponding eigenspace is spanned by $e^{\lambda x}$.

Example. $\quad V=C^{\infty}(\mathbb{R}), L: V \rightarrow V, L f=f^{\prime \prime}$.
$L f=\lambda f \Longleftrightarrow f^{\prime \prime}(x)-\lambda f(x)=0$ for all $x \in \mathbb{R}$.
It follows that each $\lambda \in \mathbb{R}$ is an eigenvalue of L and the corresponding eigenspace V_{λ} is two-dimensional.
If $\lambda>0$ then $V_{\lambda}=\operatorname{Span}(\exp (\sqrt{\lambda} x), \exp (-\sqrt{\lambda} x))$.
If $\lambda<0$ then $V_{\lambda}=\operatorname{Span}(\sin (\sqrt{-\lambda} x), \cos (\sqrt{-\lambda} x))$.
If $\lambda=0$ then $V_{\lambda}=\operatorname{Span}(1, x)$.

Let V be a vector space and $L: V \rightarrow V$ be a linear operator.

Proposition 1 Suppose \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors of L associated with different eigenvalues λ_{1} and λ_{2}. Then \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent.

Proof: Assume that \mathbf{v}_{1} and \mathbf{v}_{2} are linearly dependent. Then $\mathbf{v}_{1}=t \mathbf{v}_{2}$ for some $t \in \mathbb{R}$. It follows that
$L\left(\mathbf{v}_{1}\right)=L\left(t \mathbf{v}_{2}\right)=t L\left(\mathbf{v}_{2}\right)=t\left(\lambda_{2} \mathbf{v}_{2}\right)=\lambda_{2}\left(t \mathbf{v}_{2}\right)=\lambda_{2} \mathbf{v}_{1}$.
But $L\left(\mathbf{v}_{1}\right)=\lambda_{1} \mathbf{v}_{1} \Longrightarrow \lambda_{1} \mathbf{v}_{1}=\lambda_{2} \mathbf{v}_{1}$
$\Longrightarrow\left(\lambda_{1}-\lambda_{2}\right) \mathbf{v}_{1}=\mathbf{0} \Longrightarrow \mathbf{v}_{1}=\mathbf{0}$, a contradiction.

Let $L: V \rightarrow V$ be a linear operator.
Proposition 2 If $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are eigenvectors of L associated with distinct eigenvalues λ_{1}, λ_{2}, and λ_{3}, then they are linearly independent.
Proof: Suppose that $t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3}=\mathbf{0}$ for some $t_{1}, t_{2}, t_{3} \in \mathbb{R}$. Then

$$
\begin{gathered}
L\left(t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3}\right)=\mathbf{0} \\
t_{1} L\left(\mathbf{v}_{1}\right)+t_{2} L\left(\mathbf{v}_{2}\right)+t_{3} L\left(\mathbf{v}_{3}\right)=\mathbf{0} \\
t_{1} \lambda_{1} \mathbf{v}_{1}+t_{2} \lambda_{2} \mathbf{v}_{2}+t_{3} \lambda_{3} \mathbf{v}_{3}=\mathbf{0}
\end{gathered}
$$

It follows that $t_{1}\left(\lambda_{1}-\lambda_{3}\right) \mathbf{v}_{1}+t_{2}\left(\lambda_{2}-\lambda_{3}\right) \mathbf{v}_{2}=\mathbf{0}$.
By the above \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent. Hence $t_{1}\left(\lambda_{1}-\lambda_{3}\right)=t_{2}\left(\lambda_{2}-\lambda_{3}\right)=0$
$\Longrightarrow t_{1}=t_{2}=0 \Longrightarrow t_{3}=0$.

Theorem If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Corollary Let A be an $n \times n$ matrix such that the characteristic equation $\operatorname{det}(A-\lambda I)=0$ has n distinct real roots. Then \mathbb{R}^{n} has a basis consisting of eigenvectors of A.
Proof: Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be distinct real roots of the characteristic equation. Any λ_{i} is an eigenvalue of A, hence there is an associated eigenvector \mathbf{v}_{i}. By the theorem, vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly independent. Therefore they form a basis for \mathbb{R}^{n}.

Theorem If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct real numbers, then the functions $e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}$ are linearly independent.

Proof: Consider a linear operator $D: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ given by $D f=f^{\prime}$. Then $e^{\lambda_{1} x}, \ldots, e^{\lambda_{k} x}$ are eigenfunctions of D associated with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$.

Characteristic polynomial of an operator

Let L be a linear operator on a finite-dimensional vector space V. Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be a basis for V. Let A be the matrix of L with respect to this basis.

Definition. The characteristic polynomial of the matrix A is called the characteristic polynomial of the operator L.

Then eigenvalues of L are roots of its characteristic polynomial.
Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a different basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$. Then $A=U B U^{-1}$, where U is the transition matrix from the basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$. We obtain

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(U B U^{-1}-\lambda I\right) \\
=\operatorname{det}\left(U(B-\lambda I) U^{-1}\right)
\end{gathered}
$$

$$
=\operatorname{det}(U) \operatorname{det}(B-\lambda I) \operatorname{det}\left(U^{-1}\right)=\operatorname{det}(B-\lambda I)
$$

Diagonalization

Let L be a linear operator on a finite-dimensional vector space V.
Definition. The operator L is diagonalizable if it has a diagonal matrix with respect to some basis for V. Equivalently, if V has a basis consisting of eigenvectors of L.
Theorem Suppose A is a square matrix that admits a basis of eigenvectors. Then A is similar to a diagonal matrix B, i.e., $A=U B U^{-1}$ for an invertible matrix U.
Definition. A square matrix A is diagonalizable if it is similar to a diagonal matrix. Otherwise the matrix A is called defective.

Example. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 1 and 3 .
- The eigenspace of A associated with the eigenvalue 1 is the line spanned by $\mathbf{v}_{1}=(-1,1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line spanned by $\mathbf{v}_{2}=(1,1)$.
- Eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2} form a basis for \mathbb{R}^{2}.

Thus the matrix A is diagonalizable. Namely, $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right), \quad U=\left(\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right) .
$$

Example. $\quad A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 0 and 2 .
- The eigenspace corresponding to 0 is spanned by
$\mathbf{v}_{1}=(-1,1,0)$.
- The eigenspace corresponding to 2 is spanned by $\mathbf{v}_{2}=(1,1,0)$ and $\mathbf{v}_{3}=(-1,0,1)$.
- Eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ form a basis for \mathbb{R}^{3}.

Thus the matrix A is diagonalizable. Namely, $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), \quad U=\left(\begin{array}{rrr}
-1 & 1 & -1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

