Linear Algebra **Lecture 31:**

Bases of eigenvectors. Diagonalization.

Math 304-504

Eigenvalues and eigenvectors of a matrix

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an **eigenvalue** of the matrix A if $A\mathbf{v} = \lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^n$.

The vector \mathbf{v} is called an **eigenvector** of A belonging to (or associated with) the eigenvalue λ .

If λ is an eigenvalue of A then the nullspace $N(A-\lambda I)$, which is nontrivial, is called the **eigenspace** of A corresponding to λ . The eigenspace consists of all eigenvectors belonging to the eigenvalue λ plus the zero vector.

Characteristic equation

Definition. Given a square matrix A, the equation $det(A - \lambda I) = 0$ is called the **characteristic** equation of A.

Eigenvalues λ of A are roots of the characteristic equation.

If A is an $n \times n$ matrix then $p(\lambda) = \det(A - \lambda I)$ is a polynomial of degree n. It is called the **characteristic polynomial** of A.

Example. $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

$$\det(A - \lambda I) = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix}$$

 $=(a-\lambda)(d-\lambda)-bc$

 $=\lambda^2-(a+d)\lambda+(ad-bc)$.

Example. $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$.

$$\det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{vmatrix}$$

$$= -\lambda^3 + c_1\lambda^2 - c_2\lambda + c_3,$$

where $c_1 = a_{11} + a_{22} + a_{33}$ (the *trace* of A), $c_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{32} \end{vmatrix},$ $c_3 = \det A$.

Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and $L: V \to V$ be a linear operator. A number λ is called an **eigenvalue** of the operator L if $L(\mathbf{v}) = \lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector \mathbf{v} is called an **eigenvector** of L associated with the eigenvalue λ . (If V is a functional space then eigenvectors are also called **eigenfunctions**.)

If $V = \mathbb{R}^n$ then the linear operator L is given by $L(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ matrix. In this case, eigenvalues and eigenvectors of the operator L are precisely eigenvalues and eigenvectors of the matrix A.

Eigenspaces

Let $L: V \to V$ be a linear operator.

For any $\lambda \in \mathbb{R}$, let V_{λ} denotes the set of all solutions of the equation $L(\mathbf{x}) = \lambda \mathbf{x}$.

Then V_{λ} is a *subspace* of V since V_{λ} is the *kernel* of a linear operator given by $\mathbf{x} \mapsto L(\mathbf{x}) - \lambda \mathbf{x}$.

 V_{λ} minus the zero vector is the set of all eigenvectors of L associated with the eigenvalue λ . In particular, $\lambda \in \mathbb{R}$ is an eigenvalue of L if and only if $V_{\lambda} \neq \{\mathbf{0}\}$.

If $V_{\lambda} \neq \{0\}$ then it is called the **eigenspace** of L corresponding to the eigenvalue λ .

Example. $V = C^{\infty}(\mathbb{R}), D: V \to V, Df = f'.$

A function $f \in C^{\infty}(\mathbb{R})$ is an eigenfunction of the operator D belonging to an eigenvalue λ if $f'(x) = \lambda f(x)$ for all $x \in \mathbb{R}$.

It follows that $f(x) = ce^{\lambda x}$, where c is a nonzero constant.

Thus each $\lambda \in \mathbb{R}$ is an eigenvalue of D. The corresponding eigenspace is spanned by $e^{\lambda x}$. Example. $V = C^{\infty}(\mathbb{R}), L: V \to V, Lf = f''.$

$$Lf = \lambda f \iff f''(x) - \lambda f(x) = 0 \text{ for all } x \in \mathbb{R}.$$

It follows that each $\lambda \in \mathbb{R}$ is an eigenvalue of L and the corresponding eigenspace V_{λ} is two-dimensional.

If $\lambda > 0$ then $V_{\lambda} = \operatorname{Span}(\exp(\sqrt{\lambda}x), \exp(-\sqrt{\lambda}x))$.

If $\lambda < 0$ then $V_{\lambda} = \operatorname{Span}(\sin(\sqrt{-\lambda}x), \cos(\sqrt{-\lambda}x))$.

If $\lambda = 0$ then $V_{\lambda} = \operatorname{Span}(1, x)$.

Let V be a vector space and $L:V\to V$ be a linear operator.

Proposition 1 Suppose \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of L associated with different eigenvalues λ_1 and λ_2 . Then \mathbf{v}_1 and \mathbf{v}_2 are linearly independent.

Proof: Assume that \mathbf{v}_1 and \mathbf{v}_2 are linearly dependent. Then $\mathbf{v}_1 = t\mathbf{v}_2$ for some $t \in \mathbb{R}$. It follows that

$$L(\mathbf{v}_1) = L(t\mathbf{v}_2) = tL(\mathbf{v}_2) = t(\lambda_2\mathbf{v}_2) = \lambda_2(t\mathbf{v}_2) = \lambda_2\mathbf{v}_1.$$

But $L(\mathbf{v}_1) = \lambda_1 \mathbf{v}_1 \implies \lambda_1 \mathbf{v}_1 = \lambda_2 \mathbf{v}_1$ $\implies (\lambda_1 - \lambda_2) \mathbf{v}_1 = \mathbf{0} \implies \mathbf{v}_1 = \mathbf{0}$, a contradiction. Let $L: V \to V$ be a linear operator.

Proposition 2 If \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are eigenvectors of L associated with distinct eigenvalues λ_1 , λ_2 , and λ_3 , then they are linearly independent.

Proof: Suppose that $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + t_3\mathbf{v}_3 = \mathbf{0}$ for some $t_1, t_2, t_3 \in \mathbb{R}$. Then

$$egin{aligned} & L(t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + t_3 \mathbf{v}_3) = \mathbf{0}, \ & t_1 L(\mathbf{v}_1) + t_2 L(\mathbf{v}_2) + t_3 L(\mathbf{v}_3) = \mathbf{0}, \ & t_1 \lambda_1 \mathbf{v}_1 + t_2 \lambda_2 \mathbf{v}_2 + t_3 \lambda_3 \mathbf{v}_3 = \mathbf{0}. \end{aligned}$$

It follows that $t_1(\lambda_1 - \lambda_3)\mathbf{v}_1 + t_2(\lambda_2 - \lambda_3)\mathbf{v}_2 = \mathbf{0}$. By the above \mathbf{v}_1 and \mathbf{v}_2 are linearly independent. Hence $t_1(\lambda_1 - \lambda_3) = t_2(\lambda_2 - \lambda_3) = 0$ $\implies t_1 = t_2 = 0 \implies t_3 = 0$.

Theorem If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Corollary Let A be an $n \times n$ matrix such that the characteristic equation $det(A - \lambda I) = 0$ has n distinct real roots. Then \mathbb{R}^n has a basis consisting of eigenvectors of A.

Proof: Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be distinct real roots of the characteristic equation. Any λ_i is an eigenvalue of A, hence there is an associated eigenvector \mathbf{v}_i . By the theorem, vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are linearly independent. Therefore they form a basis for \mathbb{R}^n .

Theorem If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct real numbers, then the functions $e^{\lambda_1 x}, e^{\lambda_2 x}, \ldots, e^{\lambda_k x}$ are linearly independent.

Proof: Consider a linear operator $D: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ given by Df = f'. Then $e^{\lambda_1 x}, \dots, e^{\lambda_k x}$ are eigenfunctions of D

associated with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$.

Characteristic polynomial of an operator

Let L be a linear operator on a finite-dimensional vector space V. Let $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ be a basis for V. Let A be the matrix of L with respect to this basis.

Definition. The characteristic polynomial of the matrix A is called the **characteristic polynomial** of the operator L.

Then eigenvalues of L are roots of its characteristic polynomial.

Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a different basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$. Then $A = UBU^{-1}$. where U is the transition matrix from the basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ to $\mathbf{u}_1, \dots, \mathbf{u}_n$. We obtain

$$\det(A - \lambda I) = \det(UBU^{-1} - \lambda I)$$

$$= \det(U(B - \lambda I)U^{-1})$$

$$= \det(II) \det(B - \lambda I) \det(II^{-1}) - \det(B - \lambda I)$$

 $= \det(U) \det(B - \lambda I) \det(U^{-1}) = \det(B - \lambda I).$

Diagonalization

Let L be a linear operator on a finite-dimensional vector space V.

Definition. The operator L is **diagonalizable** if it has a diagonal matrix with respect to some basis for V. Equivalently, if V has a basis consisting of eigenvectors of L.

Theorem Suppose A is a square matrix that admits a basis of eigenvectors. Then A is similar to a diagonal matrix B, i.e., $A = UBU^{-1}$ for an invertible matrix U.

Definition. A square matrix A is **diagonalizable** if it is similar to a diagonal matrix. Otherwise the matrix A is called **defective**.

Example.
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
.

- The matrix A has two eigenvalues: 1 and 3.
- The eigenspace of A associated with the eigenvalue 1 is the line spanned by $\mathbf{v}_1 = (-1, 1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line spanned by $\mathbf{v}_2 = (1, 1)$.
- Eigenvectors \mathbf{v}_1 and \mathbf{v}_2 form a basis for \mathbb{R}^2 .

Thus the matrix A is diagonalizable. Namely, $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \qquad U = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Example.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

- The matrix A has two eigenvalues: 0 and 2.
- The eigenspace corresponding to 0 is spanned by $\mathbf{v}_1 = (-1, 1, 0)$.
- The eigenspace corresponding to 2 is spanned by $\mathbf{v}_2 = (1, 1, 0)$ and $\mathbf{v}_3 = (-1, 0, 1)$.
- Eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ form a basis for \mathbb{R}^3 .

Thus the matrix A is diagonalizable. Namely, $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \qquad U = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$