Math 304-504
Linear Algebra
Lecture 32:
Diagonalization (continued).
Complex eigenvalues and eigenvectors.

Diagonalization

Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of L with respect to some basis is diagonal;
- there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these conditions.

Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as
$A=U B U^{-1}$, where the matrix B is diagonal;
- there exists a basis for \mathbb{R}^{n} formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions. Otherwise A is called defective.

Problem. Diagonalize the matrix $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$.
We need to find a diagonal matrix B and an invertible matrix U such that $A=U B U^{-1}$.
Suppose that $\mathbf{v}_{1}=\left(x_{1}, y_{1}\right), \mathbf{v}_{2}=\left(x_{2}, y_{2}\right)$ is a basis for \mathbb{R}^{2} formed by eigenvectors of A, i.e., $A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$ for some $\lambda_{i} \in \mathbb{R}$. Then we can take

$$
B=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right), \quad U=\left(\begin{array}{cc}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right) .
$$

Note that U is the transition matrix from the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ to the standard basis.

Problem. Diagonalize the matrix $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$.
Characteristic equation of $A:\left|\begin{array}{cc}4-\lambda & 3 \\ 0 & 1-\lambda\end{array}\right|=0$.
$(4-\lambda)(1-\lambda)=0 \quad \Longrightarrow \quad \lambda_{1}=4, \lambda_{2}=1$.
Associated eigenvectors: $\mathbf{v}_{1}=(1,0), \mathbf{v}_{2}=(-1,1)$.
Thus $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find A^{5}.
We know that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Then $A^{5}=U B U^{-1} U B U^{-1} U B U^{-1} U B U^{-1} U B U^{-1}$

$$
\begin{aligned}
& =U B^{5} U^{-1}=\left(\begin{array}{lr}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1024 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1024 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1024 & 1023 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find a matrix C such that $C^{2}=A$.

We know that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)
$$

Suppose that $D^{2}=B$ for some matrix D. Let $C=U D U^{-1}$. Then $C^{2}=U D U^{-1} U D U^{-1}=U D^{2} U^{-1}=U B U^{-1}=A$.
We can take $D=\left(\begin{array}{cc}\sqrt{4} & 0 \\ 0 & \sqrt{1}\end{array}\right)=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$.
Then $C=\left(\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)$.

There are two obstructions to existence of a basis consisting of eigenvectors. They are illustrated by the following examples.
Example 1. $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
$\operatorname{det}(A-\lambda I)=(\lambda-1)^{2}$. Hence $\lambda=1$ is the only eigenvalue. The associated eigenspace is the line $t(1,0)$.
Example 2. $\quad A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$. $\operatorname{det}(A-\lambda I)=\lambda^{2}+1$.
\Longrightarrow no real eigenvalues or eigenvectors
(However there are complex eigenvalues/eigenvectors.)

Evolution of numbers

Natural numbers: $\mathbb{N}=\{1,2,3, \ldots\}$.

$$
x+5=3, \quad x=?
$$

Integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.

$$
7 x=5, \quad x=?
$$

Rational numbers: $\mathbb{Q}=\left\{\frac{m}{n}: m, n \in \mathbb{Z}, n \neq 0\right\}$.

$$
x^{2}=2, \quad x=?
$$

Real numbers: \mathbb{R}.

$$
x^{2}+1=0, \quad x=?
$$

Complex numbers

\mathbb{C} : complex numbers.
Complex number:

$$
z=x+i y
$$

where $x, y \in \mathbb{R}$ and $i^{2}=-1$.
$i=\sqrt{-1}$: imaginary unit
Alternative notation: $z=x+y i$.
$x=$ real part of z,
iy $=$ imaginary part of z
$y=0 \Longrightarrow z=x$ (real number)
$x=0 \Longrightarrow z=i y$ (purely imaginary number)

We add and multiply complex numbers as polynomials in i (but keep in mind that $i^{2}=-1$). If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ then

$$
\begin{gathered}
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \\
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right) .
\end{gathered}
$$

Examples. - $(1+i)-(3+5 i)=(1-3)+(i-5 i)$
$=-2-4 i$;

- $(1+i)(3+5 i)=1 \cdot 3+i \cdot 3+1 \cdot 5 i+i \cdot 5 i$
$=3+3 i+5 i+5 i^{2}=3+3 i+5 i-5=-2+8 i$;
- $2 i(3-2 i)=6 i-4 i^{2}=4+6 i$;
- $(2+3 i)(2-3 i)=4-9 i^{2}=4+9=13$;
- $i^{3}=-i, \quad i^{4}=1, \quad i^{5}=i$.

Let $z=\cos \alpha+i \sin \alpha, \quad w=\cos \beta+i \sin \beta$, where $\alpha, \beta \in \mathbb{R}$.
$z w=\cos \alpha \cos \beta+i \cos \alpha \sin \beta+i \sin \alpha \cos \beta+$ $i^{2} \sin \alpha \sin \beta=(\cos \alpha \cos \beta-\sin \alpha \sin \beta)+$ $i(\sin \alpha \cos \beta+\sin \beta \cos \alpha)=\cos (\alpha+\beta)+i \sin (\alpha+\beta)$.

By definition, $\quad e^{i \phi}=\cos \phi+i \sin \phi$ for any $\phi \in \mathbb{R}$. Then $e^{i(\alpha+\beta)}=e^{i \alpha} e^{i \beta}, \alpha, \beta \in \mathbb{R}$.

Geometric representation

Any complex number $z=x+i y$ is represented by the vector/point $(x, y) \in \mathbb{R}^{2}$.

$x=r \cos \phi, \quad y=r \sin \phi$
$\Longrightarrow z=r(\cos \phi+i \sin \phi)=r e^{i \phi}$.

$$
z=r(\cos \phi+i \sin \phi)=r e^{i \phi}
$$

$r \geq 0$ is the modulus of z (denoted $|z|)$.
$|x+i y|=\sqrt{x^{2}+y^{2}}$.
$\phi \in \mathbb{R}$ is the argument of z (determined up to adding a multiple of 2π).

$$
z_{1}=r_{1} e^{i \phi_{1}}, \quad z_{2}=r_{2} e^{i \phi_{2}} \quad \Longrightarrow \quad z_{1} z_{2}=r_{1} r_{2} e^{i\left(\phi_{1}+\phi_{2}\right)}
$$

Division

If $z=r e^{i \phi}$, then $z^{-1}=r^{-1} e^{-i \phi}$ because
$r e^{i \phi} \cdot r^{-1} e^{-i \phi}=r r^{-1} e^{i(\phi-\phi)}=e^{i 0}=1$.

$$
z_{1}=r_{1} e^{i \phi_{1}}, \quad z_{2}=r_{2} e^{i \phi_{2}} \Longrightarrow \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\phi_{1}-\phi_{2}\right)}
$$

Given $z=x+i y$, the complex conjugate of z is $\bar{z}=x-i y$. The conjugacy $z \mapsto \bar{z}$ is the reflection of \mathbb{C} in the real line.

$$
\begin{gathered}
z \bar{z}=(x+i y)(x-i y)=x^{2}-(i y)^{2}=x^{2}+y^{2}=|z|^{2} . \\
z^{-1}=\frac{\bar{z}}{|z|^{2}}, \quad(x+i y)^{-1}=\frac{x-i y}{x^{2}+y^{2}} .
\end{gathered}
$$

Examples. - $i^{-1}=\frac{i}{i^{2}}=-i$;

$$
\begin{aligned}
& \text { - } \frac{1}{1-i}=\frac{1+i}{(1-i)(1+i)}=\frac{1+i}{1-i^{2}}=\frac{1}{2}+\frac{1}{2} i ; \\
& \text { - } \frac{2+3 i}{1+2 i}=\frac{(2+3 i)(1-2 i)}{(1+2 i)(1-2 i)}=\frac{8-i}{5}=1.6-0.2 i .
\end{aligned}
$$

Roots of unity

Problem. Solve the equation $z^{n}-1=0 \quad(n \geq 1)$.
Let $z=r e^{i \phi}(r>0, \phi \in \mathbb{R})$. Then $z^{n}=r^{n} e^{i n \phi}$. Hence $z^{n}=1$ if $r^{n}=1$ and $n \phi=2 \pi k, k \in \mathbb{Z}$.
That is, $r=1, \phi=2 \pi k / n, k \in \mathbb{Z}$.
Solutions: $\quad z_{k}=\cos \frac{2 \pi k}{n}+i \sin \frac{2 \pi k}{n}, \quad 0 \leq k \leq n-1$.
Cubic roots of unity: $1,-\frac{1}{2}+\frac{\sqrt{3}}{2} i,-\frac{1}{2}-\frac{\sqrt{3}}{2} i$.
Roots of unity of degree 4: $1, i,-1,-i$.

Fundamental Theorem of Algebra

 Any polynomial of degree $n \geq 1$, with complex coefficients, has exactly n roots (counting with multiplicities).Equivalently, if

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

where $a_{i} \in \mathbb{C}$ and $a_{n} \neq 0$, then there exist complex numbers $z_{1}, z_{2}, \ldots, z_{n}$ such that

$$
p(z)=a_{n}\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right) .
$$

Complex eigenvalues/eigenvectors

Example. $\quad A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right) . \quad \operatorname{det}(A-\lambda I)=\lambda^{2}+1$.
Characteristic roots: $\lambda_{1}=i$ and $\lambda_{2}=-i$.
Associated eigenvectors: $\mathbf{v}_{1}=(1,-i)$ and $\mathbf{v}_{2}=(1, i)$.

$$
\begin{aligned}
& \left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\binom{1}{-i}=\binom{i}{1}=i\binom{1}{-i}, \\
& \left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\binom{1}{i}=\binom{-i}{1}=-i\binom{1}{i} .
\end{aligned}
$$

$\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis of eigenvectors. In which space?

Complexification

Instead of the real vector space \mathbb{R}^{2}, we consider a complex vector space \mathbb{C}^{2} (all complex numbers are admissible as scalars).
The linear operator $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(\mathbf{x})=A \mathbf{x}$ is replaced by the complexified linear operator $F: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, F(\mathbf{x})=A \mathbf{x}$.
The vectors $\mathbf{v}_{1}=(1,-i)$ and $\mathbf{v}_{2}=(1, i)$ form a basis for \mathbb{C}^{2}.
Example. $\quad A_{\phi}=\left(\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right)$.

$$
A_{\phi} \mathbf{v}_{1}=\binom{\cos \phi+i \sin \phi}{-i \cos \phi+\sin \phi}=e^{i \phi} \mathbf{v}_{1}, \quad A_{\phi} \mathbf{v}_{2}=e^{-i \phi} \mathbf{v}_{2}
$$

