Math 304-504
 Linear algebra

Lecture 35:
Symmetric and orthogonal matrices.

Problem. Let $A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$. Find $e^{t A}$.
$A^{2}=\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right), \quad A^{3}=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right), \quad A^{4}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \ldots$
$e^{t A}=I+t A+\frac{t^{2}}{2!} A^{2}+\cdots+\frac{t^{n}}{n!} A^{n}+\cdots=\left(\begin{array}{ll}a(t) & b(t) \\ c(t) & d(t)\end{array}\right)$,
where $a(t)=1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}-\cdots=\cos t$,
$b(t)=-t+\frac{t^{3}}{3!}-\frac{t^{5}}{5!}+\cdots=-\sin t$,
$c(t)=-b(t)=\sin t, \quad d(t)=a(t)=\cos t$.
Thus $e^{t A}=\left(\begin{array}{rr}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right)$.

Let $A_{\phi}=\left(\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right)$.

- A is the matrix of rotation by angle ϕ
- $A_{\phi} A_{\psi}=A_{\phi+\psi}$
- $A_{\phi}^{T}=A_{-\phi}$
- $A_{\phi}^{-1}=A_{-\phi}=A_{\phi}^{T}$
- Columns of A_{ϕ} form an orthonormal basis for \mathbb{R}^{2}
- Rows of A_{ϕ} form an orthonormal basis for \mathbb{R}^{2}

Proposition For any $n \times n$ matrix A and any vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, \quad A \mathbf{x} \cdot \mathbf{y}=\mathbf{x} \cdot A^{T} \mathbf{y}$.

Proof: $\quad A \mathbf{x} \cdot \mathbf{y}=\mathbf{y}^{T} A \mathbf{x}=\left(\mathbf{y}^{T} A \mathbf{x}\right)^{T}=\mathbf{x}^{T} A^{T} \mathbf{y}=$ $=A^{T} \mathbf{y} \cdot \mathbf{x}=\mathbf{x} \cdot A^{T} \mathbf{y}$.

Definition. An $n \times n$ matrix A is called

- symmetric if $A^{T}=A$;
- orthogonal if $A A^{T}=A^{T} A=I$, that is, if $A^{T}=A^{-1}$;
- normal if $A A^{T}=A^{T} A$.

Clearly, symmetric and orthogonal matrices are normal.

Theorem If \mathbf{x} and \mathbf{y} are eigenvectors of a symmetric matrix A associated with different eigenvalues, then $\mathbf{x} \cdot \mathbf{y}=0$.
Proof: Suppose $A \mathbf{x}=\lambda \mathbf{x}$ and $A \mathbf{y}=\mu \mathbf{y}$, where $\lambda \neq \mu$. Then $A \mathbf{x} \cdot \mathbf{y}=\lambda(\mathbf{x} \cdot \mathbf{y}), \mathbf{x} \cdot A \mathbf{y}=\mu(\mathbf{x} \cdot \mathbf{y})$.
But $A \mathbf{x} \cdot \mathbf{y}=\mathbf{x} \cdot A^{T} \mathbf{y}=\mathbf{x} \cdot A \mathbf{y}$.
Thus $\lambda(\mathbf{x} \cdot \mathbf{y})=\mu(\mathbf{x} \cdot \mathbf{y}) \Longrightarrow \mathbf{x} \cdot \mathbf{y}=0$.
Theorem Suppose A is a symmetric $n \times n$ matrix.
Then (a) all eigenvalues of A are real;
(b) there exists an orthonormal basis for \mathbb{R}^{n} consisting of eigenvectors of A.

Example. $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 1\end{array}\right)$.

- A is symmetric.
- A has three eigenvalues: 0,2 , and 3 .
- Associated eigenvectors are $\mathbf{v}_{1}=(-1,0,1)$,
$\mathbf{v}_{2}=(1,0,1)$, and $\mathbf{v}_{3}=(0,1,0)$.
- Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ form an orthogonal basis for \mathbb{R}^{3}.

Theorem If A is a normal matrix then
$N(A)=N\left(A^{T}\right)$ (that is, $A \mathbf{x}=\mathbf{0} \Longleftrightarrow A^{T} \mathbf{x}=\mathbf{0}$).
Proof: $A \mathbf{x}=\mathbf{0} \Longleftrightarrow A \mathbf{x} \cdot A \mathbf{x}=0 \Longleftrightarrow \mathbf{x} \cdot A^{\top} A \mathbf{x}=0$
$\Longleftrightarrow \mathbf{x} \cdot A A^{T} \mathbf{x}=0 \Longleftrightarrow A^{T} \mathbf{x} \cdot A^{T} \mathbf{x}=0 \Longleftrightarrow A^{T} \mathbf{x}=\mathbf{0}$.
Proposition If a matrix A is normal, so are matrices $A-\lambda I, \lambda \in \mathbb{R}$.
Proof: Let $B=A-\lambda /$, where $\lambda \in \mathbb{R}$. Then $B^{T}=(A-\lambda I)^{T}=A^{T}-(\lambda I)^{T}=A^{T}-\lambda I$.
We have $B B^{T}=(A-\lambda I)\left(A^{T}-\lambda I\right)=A A^{T}-\lambda A-\lambda A^{T}+\lambda^{2} I$, $B^{T} B=\left(A^{T}-\lambda I\right)(A-\lambda I)=A^{T} A-\lambda A-\lambda A^{T}+\lambda^{2} I$.
Hence $A A^{T}=A^{T} A \Longrightarrow B B^{T}=B^{T} B$.
Thus any normal matrix A shares with A^{T} all real eigenvalues and the corresponding eigenvectors. How about complex eigenvalues?

Dot product of complex vectors

Dot product of real vectors
$\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$:

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
$$

Dot product of complex vectors
$\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{C}^{n}$:

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}+\cdots+x_{n} \overline{y_{n}} .
$$

If $z=r+i t(r, t \in \mathbb{R})$ then $\bar{z}=r-i t$,
$z \bar{z}=r^{2}+t^{2}=|z|^{2}$.
Hence $\mathbf{x} \cdot \mathbf{x}=\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\cdots+\left|x_{n}\right|^{2} \geq 0$.
Also, $\mathbf{x} \cdot \mathbf{x}=0$ if and only if $\mathbf{x}=\mathbf{0}$.
Since $\overline{z+w}=\bar{z}+\bar{w}$ and $\overline{z w}=\bar{z} \bar{w}$, it follows that $\mathbf{y} \cdot \mathbf{x}=\overline{\mathbf{x} \cdot \mathbf{y}}$.

Definition. Let V be a complex vector space. A function $\beta: V \times V \rightarrow \mathbb{C}$, denoted $\beta(\mathbf{x}, \mathbf{y})=\langle\mathbf{x}, \mathbf{y}\rangle$, is called an inner product on V if
(i) $\langle\mathbf{x}, \mathbf{y}\rangle \geq 0,\langle\mathbf{x}, \mathbf{x}\rangle=0$ only for $\mathbf{x}=\mathbf{0}$ (positivity)
(ii) $\langle\mathbf{x}, \mathbf{y}\rangle=\overline{\langle\mathbf{y}, \mathbf{x}\rangle}$
(iii) $\langle r \mathbf{x}, \mathbf{y}\rangle=r\langle\mathbf{x}, \mathbf{y}\rangle$
(conjugate symmetry)
(iv) $\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$
(homogeneity)
(additivity)
$\langle\mathbf{x}, \mathbf{y}\rangle$ is complex-linear as a function of \mathbf{x}.
The dependence on the second argument is called half-linearity: $\langle\mathbf{x}, \lambda \mathbf{y}+\mu \mathbf{z}\rangle=\bar{\lambda}\langle\mathbf{x}, \mathbf{y}\rangle+\bar{\mu}\langle\mathbf{x}, \mathbf{z}\rangle$.
Example. $\langle f, g\rangle=\int_{a}^{b} f(x) \overline{g(x)} d x$, $f, g \in C([a, b], \mathbb{C})$.

Theorem Suppose A is a normal matrix. Then for any $\mathbf{x} \in \mathbb{C}^{n}$ and $\lambda \in \mathbb{C}$ one has

$$
A \mathbf{x}=\lambda \mathbf{x} \Longleftrightarrow A^{T} \mathbf{x}=\bar{\lambda} \mathbf{x}
$$

Corollary All eigenvalues of a symmetric matrix are real. All eigenvalues λ of an orthogonal matrix satisfy $|\lambda|=1$.

Theorem Suppose A is a normal $n \times n$ matrix. Then there exists an orthonormal basis for \mathbb{C}^{n} consisting of eigenvectors of A.

Orthogonal matrices

Theorem Given an $n \times n$ matrix A, the following conditions are equivalent:
(i) A is orthogonal: $A^{T}=A^{-1}$;
(ii) columns of A form an orthonormal basis for \mathbb{R}^{n};
(iii) rows of A form an orthonormal basis for \mathbb{R}^{n}.
[Entries of the matrix $A^{T} A$ are the dot products of columns of A. Entries of $A A^{T}$ are the dot products of rows of A.]

Thus an orthogonal matrix is the transition matrix from one orthonormal basis to another.

