Math 304-504 Linear algebra Lecture 35: Symmetric and orthogonal matrices.

Problem. Let
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
. Find e^{tA} .
 $A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, $A^3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $A^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$,...
 $e^{tA} = I + tA + \frac{t^2}{2!}A^2 + \dots + \frac{t^n}{n!}A^n + \dots = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}$,
where $a(t) = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \dots = \cos t$,
 $b(t) = -t + \frac{t^3}{3!} - \frac{t^5}{5!} + \dots = -\sin t$,
 $c(t) = -b(t) = \sin t$, $d(t) = a(t) = \cos t$.
Thus $e^{tA} = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$.

Let
$$A_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$
.

• A is the matrix of rotation by angle ϕ

•
$$A_{\phi}A_{\psi} = A_{\phi+\psi}$$

- $A_{\phi}^T = A_{-\phi}$
- $A_{\phi}^{-1} = A_{-\phi} = A_{\phi}^T$
- Columns of A_{ϕ} form an orthonormal basis for \mathbb{R}^2
- Rows of A_{ϕ} form an orthonormal basis for \mathbb{R}^2

Proposition For any $n \times n$ matrix A and any vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $A\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot A^T \mathbf{y}$. *Proof:* $A\mathbf{x} \cdot \mathbf{y} = \mathbf{y}^T A \mathbf{x} = (\mathbf{y}^T A \mathbf{x})^T = \mathbf{x}^T A^T \mathbf{y} = A^T \mathbf{y} \cdot \mathbf{x} = \mathbf{x} \cdot A^T \mathbf{y}$.

Definition. An $n \times n$ matrix A is called

- symmetric if $A^T = A$;
- orthogonal if $AA^T = A^T A = I$, that is, if $A^T = A^{-1}$;
 - normal if $AA^T = A^T A$.

Clearly, symmetric and orthogonal matrices are normal.

Theorem If **x** and **y** are eigenvectors of a symmetric matrix *A* associated with different eigenvalues, then $\mathbf{x} \cdot \mathbf{y} = 0$.

Proof: Suppose $A\mathbf{x} = \lambda \mathbf{x}$ and $A\mathbf{y} = \mu \mathbf{y}$, where $\lambda \neq \mu$. Then $A\mathbf{x} \cdot \mathbf{y} = \lambda(\mathbf{x} \cdot \mathbf{y})$, $\mathbf{x} \cdot A\mathbf{y} = \mu(\mathbf{x} \cdot \mathbf{y})$. But $A\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot A^T \mathbf{y} = \mathbf{x} \cdot A \mathbf{y}$. Thus $\lambda(\mathbf{x} \cdot \mathbf{y}) = \mu(\mathbf{x} \cdot \mathbf{y}) \implies \mathbf{x} \cdot \mathbf{y} = 0$.

Theorem Suppose A is a symmetric $n \times n$ matrix. Then (a) all eigenvalues of A are real; (b) there exists an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A.

Example.
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
.

- A is symmetric.
- A has three eigenvalues: 0, 2, and 3.
- Associated eigenvectors are $\mathbf{v}_1 = (-1, 0, 1)$, $\mathbf{v}_2 = (1, 0, 1)$, and $\mathbf{v}_3 = (0, 1, 0)$.

• Vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ form an orthogonal basis for \mathbb{R}^3 .

Theorem If A is a normal matrix then $N(A) = N(A^T)$ (that is, $A\mathbf{x} = \mathbf{0} \iff A^T\mathbf{x} = \mathbf{0}$). *Proof:* $A\mathbf{x} = \mathbf{0} \iff A\mathbf{x} \cdot A\mathbf{x} = \mathbf{0} \iff \mathbf{x} \cdot A^T A \mathbf{x} = \mathbf{0}$ $\iff \mathbf{x} \cdot AA^T \mathbf{x} = \mathbf{0} \iff A^T \mathbf{x} \cdot A^T \mathbf{x} = \mathbf{0} \iff A^T \mathbf{x} = \mathbf{0}$.

Proposition If a matrix A is normal, so are matrices $A - \lambda I$, $\lambda \in \mathbb{R}$.

Proof: Let $B = A - \lambda I$, where $\lambda \in \mathbb{R}$. Then $B^T = (A - \lambda I)^T = A^T - (\lambda I)^T = A^T - \lambda I$. We have $BB^T = (A - \lambda I)(A^T - \lambda I) = AA^T - \lambda A - \lambda A^T + \lambda^2 I$, $B^T B = (A^T - \lambda I)(A - \lambda I) = A^T A - \lambda A - \lambda A^T + \lambda^2 I$. Hence $AA^T = A^T A \implies BB^T = B^T B$.

Thus any normal matrix A shares with A^{T} all real eigenvalues and the corresponding eigenvectors. How about complex eigenvalues?

Dot product of complex vectors

Dot product of real vectors

$$\mathbf{x} = (x_1, \dots, x_n), \ \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$$
:
 $\mathbf{x} \cdot \mathbf{y} = x_1y_1 + x_2y_2 + \dots + x_ny_n$.
Dot product of complex vectors
 $\mathbf{x} = (x_1, \dots, x_n), \ \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{C}^n$:
 $\mathbf{x} \cdot \mathbf{y} = x_1\overline{y_1} + x_2\overline{y_2} + \dots + x_n\overline{y_n}$.
If $z = r + it \ (r, t \in \mathbb{R})$ then $\overline{z} = r - it$,
 $z\overline{z} = r^2 + t^2 = |z|^2$.
Hence $\mathbf{x} \cdot \mathbf{x} = |x_1|^2 + |x_2|^2 + \dots + |x_n|^2 \ge 0$.
Also, $\mathbf{x} \cdot \mathbf{x} = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
Since $\overline{z + w} = \overline{z} + \overline{w}$ and $\overline{zw} = \overline{z} \overline{w}$, it follows that

 $\mathbf{y} \cdot \mathbf{x} = \overline{\mathbf{x} \cdot \mathbf{y}}.$

Definition. Let V be a complex vector space. A function $\beta: V \times V \to \mathbb{C}$, denoted $\beta(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$, is called an **inner product** on V if (i) $\langle \mathbf{x}, \mathbf{y} \rangle \geq 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (conjugate symmetry) (iii) $\langle r\mathbf{x}, \mathbf{y} \rangle = r \langle \mathbf{x}, \mathbf{y} \rangle$ (homogeneity) (iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ (additivity)

 $\langle \mathbf{x}, \mathbf{y} \rangle$ is complex-linear as a function of \mathbf{x} . The dependence on the second argument is called *half-linearity*: $\langle \mathbf{x}, \lambda \mathbf{y} + \mu \mathbf{z} \rangle = \overline{\lambda} \langle \mathbf{x}, \mathbf{y} \rangle + \overline{\mu} \langle \mathbf{x}, \mathbf{z} \rangle$.

Example. $\langle f,g \rangle = \int_{a}^{b} f(x)\overline{g(x)} dx$, $f,g \in C([a,b],\mathbb{C}).$ **Theorem** Suppose A is a normal matrix. Then for any $\mathbf{x} \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$ one has

$$A\mathbf{x} = \lambda \mathbf{x} \iff A^T \mathbf{x} = \overline{\lambda} \mathbf{x}.$$

Corollary All eigenvalues of a symmetric matrix are real. All eigenvalues λ of an orthogonal matrix satisfy $|\lambda| = 1$.

Theorem Suppose A is a normal $n \times n$ matrix. Then there exists an orthonormal basis for \mathbb{C}^n consisting of eigenvectors of A.

Orthogonal matrices

Theorem Given an $n \times n$ matrix A, the following conditions are equivalent:

(i) A is orthogonal: $A^T = A^{-1}$;

(ii) columns of A form an orthonormal basis for \mathbb{R}^n ; (iii) rows of A form an orthonormal basis for \mathbb{R}^n .

[Entries of the matrix $A^T A$ are the dot products of columns of A. Entries of AA^T are the dot products of rows of A.]

Thus an orthogonal matrix is the transition matrix from one orthonormal basis to another.