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Linear algebra

Lecture 35:
Symmetric and orthogonal matrices.



Problem. Let A =

(

0 −1
1 0

)

. Find etA.

A2 =

(

−1 0
0 −1

)

, A3 =

(

0 1
−1 0

)

, A4 =

(

1 0
0 1

)

,. . .

etA = I+tA+
t2

2!
A2+ · · ·+

tn

n!
An+ · · · =

(

a(t) b(t)
c(t) d(t)

)

,

where a(t) = 1 − t
2

2!
+ t

4

4!
− · · · = cos t,

b(t) = −t + t
3

3!
− t

5

5!
+ · · · = − sin t,

c(t) = −b(t) = sin t, d(t) = a(t) = cos t.

Thus etA =

(

cos t − sin t

sin t cos t

)

.



Let Aφ =

(

cos φ − sin φ

sin φ cos φ

)

.

• A is the matrix of rotation by angle φ

• AφAψ = Aφ+ψ

• AT

φ = A−φ

• A−1

φ = A−φ = AT

φ

• Columns of Aφ form an orthonormal basis for R
2

• Rows of Aφ form an orthonormal basis for R
2



Proposition For any n×n matrix A and any

vectors x, y ∈ R
n, Ax · y = x · ATy.

Proof: Ax · y = yTAx = (yTAx)T = xTATy =
= ATy · x = x · ATy.

Definition. An n×n matrix A is called
• symmetric if AT = A;
• orthogonal if AAT = ATA = I , that is, if

AT = A−1;
• normal if AAT = ATA.

Clearly, symmetric and orthogonal matrices are
normal.



Theorem If x and y are eigenvectors of a
symmetric matrix A associated with different
eigenvalues, then x · y = 0.

Proof: Suppose Ax = λx and Ay = µy, where
λ 6= µ. Then Ax · y = λ(x · y), x · Ay = µ(x · y).
But Ax · y = x · ATy = x · Ay.
Thus λ(x · y) = µ(x · y) =⇒ x · y = 0.

Theorem Suppose A is a symmetric n×n matrix.
Then (a) all eigenvalues of A are real;
(b) there exists an orthonormal basis for R

n

consisting of eigenvectors of A.



Example. A =





1 0 1
0 3 0
1 0 1



.

• A is symmetric.

• A has three eigenvalues: 0, 2, and 3.

• Associated eigenvectors are v1 = (−1, 0, 1),
v2 = (1, 0, 1), and v3 = (0, 1, 0).

• Vectors v1, v2, v3 form an orthogonal basis for
R

3.



Theorem If A is a normal matrix then
N(A) = N(AT ) (that is, Ax = 0 ⇐⇒ ATx = 0).

Proof: Ax = 0 ⇐⇒ Ax · Ax = 0 ⇐⇒ x · ATAx = 0
⇐⇒ x · AATx = 0 ⇐⇒ ATx · ATx = 0 ⇐⇒ ATx = 0.

Proposition If a matrix A is normal, so are
matrices A − λI , λ ∈ R.

Proof: Let B = A − λI , where λ ∈ R. Then
BT = (A − λI )T = AT − (λI )T = AT − λI .

We have BBT = (A − λI )(AT − λI ) = AAT − λA − λAT + λ2I ,
BTB = (AT − λI )(A − λI ) = ATA − λA − λAT + λ2I .

Hence AAT = ATA =⇒ BBT = BTB .

Thus any normal matrix A shares with AT all real
eigenvalues and the corresponding eigenvectors.
How about complex eigenvalues?



Dot product of complex vectors

Dot product of real vectors
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R

n:

x · y = x1y1 + x2y2 + · · · + xnyn.

Dot product of complex vectors
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ C

n:

x · y = x1y1 + x2y2 + · · · + xnyn.

If z = r + it (r , t ∈ R) then z = r − it,
zz = r 2 + t2 = |z |2.

Hence x · x = |x1|
2 + |x2|

2 + · · · + |xn|
2 ≥ 0.

Also, x · x = 0 if and only if x = 0.

Since z + w = z + w and zw = z w , it follows that
y · x = x · y.



Definition. Let V be a complex vector space. A
function β : V × V → C, denoted β(x, y) = 〈x, y〉,
is called an inner product on V if

(i) 〈x, y〉 ≥ 0, 〈x, x〉 = 0 only for x = 0 (positivity)

(ii) 〈x, y〉 = 〈y, x〉 (conjugate symmetry)

(iii) 〈rx, y〉 = r〈x, y〉 (homogeneity)

(iv) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 (additivity)

〈x, y〉 is complex-linear as a function of x.
The dependence on the second argument is called
half-linearity : 〈x, λy + µz〉 = λ〈x, y〉 + µ〈x, z〉.

Example. 〈f , g〉 =

∫

b

a

f (x)g(x) dx ,

f , g ∈ C ([a, b], C).



Theorem Suppose A is a normal matrix. Then for
any x ∈ C

n and λ ∈ C one has

Ax = λx ⇐⇒ ATx = λx.

Corollary All eigenvalues of a symmetric matrix
are real. All eigenvalues λ of an orthogonal matrix
satisfy |λ| = 1.

Theorem Suppose A is a normal n×n matrix.
Then there exists an orthonormal basis for C

n

consisting of eigenvectors of A.



Orthogonal matrices

Theorem Given an n×n matrix A, the following
conditions are equivalent:
(i) A is orthogonal: AT = A−1;
(ii) columns of A form an orthonormal basis for R

n;
(iii) rows of A form an orthonormal basis for R

n.

[Entries of the matrix ATA are the dot products of
columns of A. Entries of AAT are the dot products
of rows of A.]

Thus an orthogonal matrix is the transition matrix
from one orthonormal basis to another.


