
Math 304-504

Linear algebra

Lecture 36:

Symmetric and orthogonal matrices
(continued).



Dot product of complex vectors

Dot product of real vectors
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn:

x · y = x1y1 + x2y2 + · · · + xnyn.

Dot product of complex vectors
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Cn:

x · y = x1y1 + x2y2 + · · · + xnyn.

If z = r + it (t, s ∈ R) then z = r − it,
zz = r 2 + t2 = |z |2.
Hence x · x = |x1|2 + |x2|2 + · · · + |xn|2 ≥ 0.
Also, x · x = 0 if and only if x = 0.

The norm is defined by ‖x‖ =
√

x · x.



Normal matrices

Definition. An n×n matrix A is called

• symmetric if AT = A;
• orthogonal if AAT = ATA = I , i.e., AT = A−1;

• normal if AAT = ATA.

Theorem Let A be an n×n matrix with real
entries. Then
(a) A is normal ⇐⇒ there exists an orthonormal

basis for Cn consisting of eigenvectors of A;
(b) A is symmetric ⇐⇒ there exists an orthonormal

basis for R
n consisting of eigenvectors of A.



Example. A =





1 0 1
0 3 0

1 0 1



.

• A is symmetric.

• A has three eigenvalues: 0, 2, and 3.
• Associated eigenvectors are v1 = (−1, 0, 1),

v2 = (1, 0, 1), and v3 = (0, 1, 0), respectively.

• Vectors 1√
2
v1,

1√
2
v2, v3 form an orthonormal

basis for R
3.



Theorem Suppose A is a normal matrix. Then for
any x ∈ Cn and λ ∈ C one has

Ax = λx ⇐⇒ ATx = λx.

Thus any normal matrix A shares with AT all real
eigenvalues and the corresponding eigenvectors.

Also, Ax = λx ⇐⇒ Ax = λ x for any matrix A

with real entries.

Corollary All eigenvalues of a symmetric matrix

are real. All eigenvalues λ of an orthogonal matrix
satisfy λ = λ−1 ⇐⇒ |λ| = 1.



Orthogonal matrices

Theorem Given an n×n matrix A, the following
conditions are equivalent:
(i) A is orthogonal: AT = A−1;

(ii) columns of A form an orthonormal basis for Rn;
(iii) rows of A form an orthonormal basis for Rn.

Proof: Entries of the matrix ATA are the dot
products of columns of A. Entries of AAT are the
dot products of rows of A.

Thus an orthogonal matrix is the transition matrix
from one orthonormal basis to another.



Example. Aφ =

(

cos φ − sinφ

sin φ cosφ

)

.

• AφAψ = Aφ+ψ

• A−1

φ = A−φ = AT
φ

• Aφ is orthogonal

• det(Aφ − λI ) = (cosφ − λ)2 + sin2 φ.

• Eigenvalues: λ1 = cos φ + i sinφ = e iφ,

λ2 = cosφ − i sinφ = e−iφ.

• Associated eigenvectors: v1 = (1,−i),
v2 = (1, i).

• Vectors 1√
2
v1 and 1√

2
v2 form an orthonormal

basis for C
2.



Consider a linear operator L : Rn → Rn, L(x) = Ax,

where A is an n×n matrix.

Theorem The following conditions are equivalent:
(i) |L(x)| = |x| for all x ∈ Rn;

(ii) L(x) · L(y) = x · y for all x, y ∈ R
n;

(iii) the matrix A is orthogonal.

[(ii) =⇒ (iii): L(ei)·L(ej) = ei ·ej = 1 if i = j , and 0
otherwise. But L(e1), . . . , L(en) are columns of A.]

Definition. A transformation f : R
n → R

n is called
an isometry if it preserves distances between
points: |f (x) − f (y)| = |x − y|.
Theorem Any isometry f : Rn → Rn is

represented as f (x) = Ax + x0, where x0 ∈ R
n and

A is an orthogonal matrix.



Consider a linear operator L : Rn → Rn, L(x) = Ax,

where A is an n×n orthogonal matrix.

Theorem There exists an orthonormal basis for Rn

such that the matrix of L relative to this basis has a
diagonal block structure











D±1 O . . . O

O R1 . . . O
...

... . . . ...

O O . . . Rk











,

where D±1 is a diagonal matrix whose diagonal
entries are equal to 1 or −1, and

Rj =

(

cosφj − sinφj

sinφj cosφj

)

, φj ∈ R.



Classification of 2×2 orthogonal matrices:

(

cos φ − sinφ

sin φ cosφ

) (

−1 0
0 1

)

rotation reflection
about the origin in a line

Determinant: 1 −1

Eigenvalues: e iφ and e−iφ −1 and 1



Classification of 3×3 orthogonal matrices:

A =





1 0 0

0 cosφ − sinφ

0 sin φ cos φ



, B =





−1 0 0

0 1 0
0 0 1



,

C =





−1 0 0
0 cosφ − sin φ

0 sin φ cos φ



.

A = rotation about a line; B = reflection in a plane;
C = rotation about a line combined with reflection

in the orthogonal plane.

det A = 1, det B = det C = −1.

A has eigenvalues 1, e iφ, e−iφ. B has eigenvalues

−1, 1, 1. C has eigenvalues −1, e iφ, e−iφ.



Rotations in space

If the axis of rotation is oriented, we can say about
clockwise or counterclockwise rotations (with

respect to the view from the positive semi-axis).







cos θ sin θ 0
− sin θ cos θ 0

0 0 1









cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ









1 0 0
0 cos θ sin θ

0 − sin θ cos θ






