Math 304-504
Linear algebra
Lecture 37:
Rotations in space.
Orthogonal polynomials.

Orthogonal matrices

Theorem Given an $n \times n$ matrix A, the following conditions are equivalent:
(i) A is orthogonal: $A^{T}=A^{-1}$;
(ii) columns of A form an orthonormal basis for \mathbb{R}^{n};
(iii) rows of A form an orthonormal basis for \mathbb{R}^{n}.

Thus an orthogonal matrix is the transition matrix from one orthonormal basis to another.

Consider a linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, L(\mathbf{x})=A \mathbf{x}$, where A is an $n \times n$ matrix.
Theorem The following conditions are equivalent:
(i) $|L(\mathbf{x})|=|\mathbf{x}|$ for all $\mathbf{x} \in \mathbb{R}^{n}$;
(ii) $L(\mathbf{x}) \cdot L(\mathbf{y})=\mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$;
(iii) the matrix A is orthogonal.

Definition. A transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called an isometry if it preserves distances between points: $|f(\mathbf{x})-f(\mathbf{y})|=|\mathbf{x}-\mathbf{y}|$.
Theorem Any isometry $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is represented as $f(\mathbf{x})=A \mathbf{x}+\mathbf{x}_{0}$, where $\mathbf{x}_{0} \in \mathbb{R}^{n}$ and A is an orthogonal matrix.

Classification of 3×3 orthogonal matrices:
$A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi\end{array}\right)$,
$B=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$,
$C=\left(\begin{array}{rcc}-1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi\end{array}\right)$.
$A=$ rotation about a line; $B=$ reflection in a plane; $C=$ rotation about a line combined with reflection in the orthogonal plane. $\operatorname{det} A=1, \quad \operatorname{det} B=\operatorname{det} C=-1$.
A has eigenvalues $1, e^{i \phi}, e^{-i \phi}$. B has eigenvalues
$-1,1,1$. C has eigenvalues $-1, e^{i \phi}, e^{-i \phi}$.

Rotations in space

If the axis of rotation is oriented, we can say about clockwise or counterclockwise rotations (with respect to the view from the positive semi-axis).

Clockwise rotations about coordinate axes

Z

Z

$$
\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right)
$$

Problem. Find the matrix of the rotation by 90° about the line spanned by the vector $\mathbf{a}=(1,2,2)$. The rotation is assumed to be counterclockwise when looking from the tip of \mathbf{a}.
$B=\left(\begin{array}{rrr}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) \quad \begin{gathered}\text { is the matrix of (counterclockwise) } \\ \text { rotation by } 90^{\circ} \text { about the } z \text {-axis. }\end{gathered}$
We need to find an orthonormal basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ such that \mathbf{v}_{3} has the same direction as \mathbf{a}. Also, the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ should obey the same hand rule as the standard basis. Then B is the matrix of the given rotation relative to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

Let U denote the transition matrix from the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to the standard basis (columns of U are vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$). Then the desired matrix is $A=U B U^{-1}$.

Since $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is going to be an orthonormal basis, the matrix U will be orthogonal. Then $U^{-1}=U^{T}$ and $A=U B U^{T}$.

Remark. The basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ obeys the same hand rule as the standard basis if and only if $\operatorname{det} U>0$.

Hint. Vectors $\mathbf{a}=(1,2,2), \mathbf{b}=(-2,-1,2)$, and $\mathbf{c}=(2,-2,1)$ are orthogonal.
We have $|\mathbf{a}|=|\mathbf{b}|=|\mathbf{c}|=3$, hence $\mathbf{v}_{1}=\frac{1}{3} \mathbf{b}$, $\mathbf{v}_{2}=\frac{1}{3} \mathbf{c}, \mathbf{v}_{3}=\frac{1}{3} \mathbf{a}$ is an orthonormal basis.
Transition matrix: $\quad U=\frac{1}{3}\left(\begin{array}{rrr}-2 & 2 & 1 \\ -1 & -2 & 2 \\ 2 & 1 & 2\end{array}\right)$.

$$
\operatorname{det} U=\frac{1}{27}\left|\begin{array}{rrr}
-2 & 2 & 1 \\
-1 & -2 & 2 \\
2 & 1 & 2
\end{array}\right|=\frac{1}{27} \cdot 27=1
$$

(In the case $\operatorname{det} U=-1$, we should interchange vectors \mathbf{v}_{1} and \mathbf{v}_{2}.)

$$
\begin{aligned}
& A=U B U^{\top} \\
& =\frac{1}{3}\left(\begin{array}{rrr}
-2 & 2 & 1 \\
-1 & -2 & 2 \\
2 & 1 & 2
\end{array}\right)\left(\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot \frac{1}{3}\left(\begin{array}{rrr}
-2 & -1 & 2 \\
2 & -2 & 1 \\
1 & 2 & 2
\end{array}\right) \\
& =\frac{1}{9}\left(\begin{array}{rrr}
2 & 2 & 1 \\
-2 & 1 & 2 \\
1 & -2 & 2
\end{array}\right)\left(\begin{array}{rrr}
-2 & -1 & 2 \\
2 & -2 & 1 \\
1 & 2 & 2
\end{array}\right) \\
& =\frac{1}{9}\left(\begin{array}{rrr}
1 & -4 & 8 \\
8 & 4 & 1 \\
-4 & 7 & 4
\end{array}\right) .
\end{aligned}
$$

$U=\frac{1}{3}\left(\begin{array}{rrr}-2 & 2 & 1 \\ -1 & -2 & 2 \\ 2 & 1 & 2\end{array}\right) \quad$ is an orthogonal matrix.
$\operatorname{det} U=1 \Longrightarrow U$ is a rotation matrix.
Problem. (a) Find the axis of the rotation.
(b) Find the angle of the rotation.

The axis is the set of points $x \in \mathbb{R}^{n}$ such that $U \mathbf{x}=\mathbf{x} \Longleftrightarrow(U-I) \mathbf{x}=\mathbf{0}$. To find the axis, we apply row reduction to the matrix $3(U-I)$:

$$
3 U-3 I=\left(\begin{array}{rrr}
-5 & 2 & 1 \\
-1 & -5 & 2 \\
2 & 1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
-3 & 3 & 0 \\
-1 & -5 & 2 \\
2 & 1 & -1
\end{array}\right)
$$

$\rightarrow\left(\begin{array}{rrr}1 & -1 & 0 \\ -1 & -5 & 2 \\ 2 & 1 & -1\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & -1 & 0 \\ 0 & -6 & 2 \\ 2 & 1 & -1\end{array}\right) \rightarrow$
$\left(\begin{array}{rrr}1 & -1 & 0 \\ 0 & -6 & 2 \\ 0 & 3 & -1\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & -1\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & -1 & 0 \\ 0 & 3 & -1 \\ 0 & 0 & 0\end{array}\right)$
$\rightarrow\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1 / 3 \\ 0 & 0 & 0\end{array}\right) \rightarrow\left(\begin{array}{ccc}1 & 0 & -1 / 3 \\ 0 & 1 & -1 / 3 \\ 0 & 0 & 0\end{array}\right)$
Thus $U \mathbf{x}=\mathbf{x} \Longleftrightarrow\left\{\begin{array}{l}x-z / 3=0 \\ y-z / 3=0\end{array}\right.$
The general solution is $x=y=t / 3, z=t, t \in \mathbb{R}$.
$\Longrightarrow \mathbf{d}=(1,1,3)$ is the direction of the axis.

$$
U=\frac{1}{3}\left(\begin{array}{rrr}
-2 & 2 & 1 \\
-1 & -2 & 2 \\
2 & 1 & 2
\end{array}\right)
$$

Let ϕ be the angle of rotation. Then the eigenvalues of U are $1, e^{i \phi}$, and $e^{-i \phi}$. Therefore

$$
\operatorname{det}(U-\lambda I)=(1-\lambda)\left(e^{i \phi}-\lambda\right)\left(e^{-i \phi}-\lambda\right)
$$

Besides, $\operatorname{det}(U-\lambda I)=-\lambda^{3}+c_{1} \lambda^{2}+c_{2} \lambda+c_{3}$, where $c_{1}=\operatorname{tr} U$ (the sum of diagonal entries). It follows that

$$
\operatorname{tr} U=1+e^{i \phi}+e^{-i \phi}=1+2 \cos \phi
$$

$\operatorname{tr} U=-2 / 3 \Longrightarrow \cos \phi=-5 / 6 \Longrightarrow \phi \approx 146.44^{\circ}$

Orthogonal polynomials

\mathcal{P} : the vector space of all polynomials with real coefficients: $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$. Basis for \mathcal{P} : $1, x, x^{2}, \ldots, x^{n}, \ldots$

Suppose that \mathcal{P} is endowed with an inner product. Definition. Orthogonal polynomials (relative to the inner product) are polynomials $p_{0}, p_{1}, p_{2}, \ldots$ such that $\operatorname{deg} p_{n}=n$ (p_{0} is a nonzero constant) and $\left\langle p_{n}, p_{m}\right\rangle=0$ for $n \neq m$.

Orthogonal polynomials can be obtained by applying the Gram-Schmidt orthogonalization process to the basis $1, x, x^{2}, \ldots$:
$p_{0}(x)=1$,
$p_{1}(x)=x-\frac{\left\langle x, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}(x)$,
$p_{2}(x)=x^{2}-\frac{\left\langle x^{2}, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}(x)-\frac{\left\langle x^{2}, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}(x)$,
$p_{n}(x)=x^{n}-\frac{\left\langle x^{n}, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}(x)-\cdots-\frac{\left\langle x^{n}, p_{n-1}\right\rangle}{\left\langle p_{n-1}, p_{n-1}\right\rangle} p_{n-1}(x)$,

Then $p_{0}, p_{1}, p_{2}, \ldots$ are orthogonal polynomials.

