Math 304-504
Linear algebra
Lecture 39:
Markov chains.

Stochastic process

Stochastic (or random) process is a sequence of experiments for which the outcome at any stage depends on a chance.
Simple model:

- a finite number of possible outcomes (called states);
- discrete time

Let S denote the set of the states. Then the stochastic process is a sequence $s_{0}, s_{1}, s_{2}, \ldots$, where all $s_{n} \in S$ depend on chance. How do they depend on chance?

Bernoulli scheme

Bernoulli scheme is a sequence of independent random events.
That is, in the sequence $s_{0}, s_{1}, s_{2}, \ldots$ any outcome s_{n} is independent of the others.
For any integer $n \geq 0$ we have a probability distribution $p^{(n)}$ on S. This means that each state $s \in S$ is assigned a value $p_{s}^{(n)} \geq 0$ so that $\sum_{s \in S} p_{s}^{(n)}=1$. Then the probability of the event $s_{n}=s$ is $p_{s}^{(n)}$.
The Bernoulli scheme is called stationary if the probability distributions $p^{(n)}$ do not depend on n.

Examples of Bernoulli schemes:

- Coin tossing

2 states: heads and tails. Equal probabilities: $1 / 2$.

- Die throwing

6 states. Uniform probability distribution: $1 / 6$ each.

- Lotto Texas

Any state is a 6 -element subset of the set $\{1,2, \ldots, 54\}$. The total number of states is
$25,827,165$. Uniform probability distribution.

Markov chain

Markov chain is a stochastic process with discrete time such that the probability of the next outcome depends only on the previous outcome.
Let $S=\{1,2, \ldots, k\}$. The Markov chain is determined by transition probabilities $p_{i j}^{(t)}$, $1 \leq i, j \leq k, t \geq 0$, and by the initial probability distribution $q_{i}, 1 \leq i \leq k$.
Here q_{i} is the probability of the event $s_{0}=i$, and $p_{i j}^{(t)}$ is the conditional probability of the event $s_{t+1}=j$ provided that $s_{t}=i$. By construction, $p_{i j}^{(t)}, q_{i} \geq 0, \sum_{i} q_{i}=1$, and $\sum_{j} p_{i j}^{(t)}=1$.

We shall assume that the Markov chain is time-independent, i.e., transition probabilities do not depend on time: $p_{i j}^{(t)}=p_{i j}$.
Then a Markov chain on $S=\{1,2, \ldots, k\}$ is determined by a probability vector $\mathbf{x}_{0}=\left(q_{1}, q_{2}, \ldots, q_{k}\right) \in \mathbb{R}^{k}$ and a $k \times k$ transition matrix $P=\left(p_{i j}\right)$. The entries in each row of P add up to 1 .

Let $s_{0}, s_{1}, s_{2}, \ldots$ be the Markov chain. Then the vector \mathbf{x}_{0} determines the probability distribution of the initial state s_{0}.

Problem. Find the (unconditional) probability distribution for any s_{n}.

Random walk

Transition matrix: $P=\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 0 & 1 / 2 & 1 / 2 \\ 1 & 0 & 0\end{array}\right)$

Problem. Find the (unconditional) probability distribution for any $s_{n}, n \geq 1$.
The probability distribution of s_{n-1} is given by a probability vector $\mathbf{x}_{n-1}=\left(a_{1}, \ldots, a_{k}\right)$. The probability distribution of s_{n} is given by a vector $\mathbf{x}_{n}=\left(b_{1}, \ldots, b_{k}\right)$.
We have

$$
b_{j}=a_{1} p_{1 j}+a_{2} p_{2 j}+\cdots+a_{k} p_{k j}, \quad 1 \leq j \leq k
$$

That is,

$$
\left(b_{1}, \ldots, b_{k}\right)=\left(a_{1}, \ldots, a_{k}\right)\left(\begin{array}{ccc}
p_{11} & \ldots & p_{1 k} \\
\vdots & \ddots & \vdots \\
p_{k 1} & \ldots & p_{k k}
\end{array}\right)
$$

$\mathbf{x}_{n}=\mathbf{x}_{n-1} P \Longrightarrow \mathbf{x}_{n}^{T}=\left(\mathbf{x}_{n-1} P\right)^{T}=P^{T} \mathbf{x}_{n-1}^{T}$.
Thus $\mathbf{x}_{n}=Q \mathbf{x}_{n-1}$, where $Q=P^{T}$ and the vectors are regarded as columns.
Then $\mathbf{x}_{n}=Q \mathbf{x}_{n-1}=Q\left(Q \mathbf{x}_{n-2}\right)=Q^{2} \mathbf{x}_{n-2}$.
Similarly, $\mathbf{x}_{n}=Q^{3} \mathbf{x}_{n-3}$, and so on.
Finally, $\mathbf{x}_{n}=Q^{n} \mathbf{x}_{0}$.

Example. Very primitive weather model:
Two states: "sunny" (1) and "rainy" (2).
Transition matrix: $P=\left(\begin{array}{cc}0.9 & 0.1 \\ 0.5 & 0.5\end{array}\right)$.
Suppose that $\mathbf{x}_{0}=(1,0)$ (sunny weather initially).
Problem. Make a long-term weather prediction.
The probability distribution of weather for day n is given by the vector $\mathbf{x}_{n}=Q^{n} \mathbf{x}_{0}$, where $Q=P^{T}$.
To compute Q^{n}, we need to diagonalize the matrix $Q=\left(\begin{array}{ll}0.9 & 0.5 \\ 0.1 & 0.5\end{array}\right)$.
$\operatorname{det}(Q-\lambda I)=\left|\begin{array}{cc}0.9-\lambda & 0.5 \\ 0.1 & 0.5-\lambda\end{array}\right|=$

$$
=\lambda^{2}-1.4 \lambda+0.4=(\lambda-1)(\lambda-0.4) .
$$

Two eigenvalues: $\lambda_{1}=1, \lambda_{2}=0.4$.
$(Q-I) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rr}-0.1 & 0.5 \\ 0.1 & -0.5\end{array}\right)\binom{x}{y}=\binom{0}{0}$
$\Longleftrightarrow(x, y)=t(5,1), \quad t \in \mathbb{R}$.
$(Q-0.4 I) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{ll}0.5 & 0.5 \\ 0.1 & 0.1\end{array}\right)\binom{x}{y}=\binom{0}{0}$
$\Longleftrightarrow(x, y)=t(-1,1), \quad t \in \mathbb{R}$.
$\mathbf{v}_{1}=(5,1)$ and $\mathbf{v}_{2}=(-1,1)$ are eigenvectors of Q belonging to eigenvalues 1 and 0.4 , respectively.

$$
\mathbf{x}_{0}=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array} { l }
{ 5 \alpha - \beta = 1 } \\
{ \alpha + \beta = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\alpha=1 / 6 \\
\beta=-1 / 6
\end{array}\right.\right.
$$

Now $\mathbf{x}_{n}=Q^{n} \mathbf{x}_{0}=Q^{n}\left(\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}\right)=$

$$
=\alpha\left(Q^{n} \mathbf{v}_{1}\right)+\beta\left(Q^{n} \mathbf{v}_{2}\right)=\alpha \mathbf{v}_{1}+(0.4)^{n} \beta \mathbf{v}_{2}
$$

which converges to the vector $\alpha \mathbf{v}_{1}=(5 / 6,1 / 6)$ as $n \rightarrow \infty$.

The vector $\mathbf{x}_{\infty}=(5 / 6,1 / 6)$ gives the limit distribution. Also, it is a steady-state vector.
Remark. The limit distribution does not depend on the initial distribution.

