Math 304–504 Linear Algebra

Lecture 3: Gauss-Jordan reduction. Applications of systems of linear equations. System of linear equations:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \dots \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n \end{cases}$$

Coefficient matrix $(m \times n)$ and column vector of the right-hand sides $(m \times 1)$:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \qquad \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

System of linear equations:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \dots \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Augmented $m \times (n+1)$ matrix:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}$$

Solution of a system of linear equations splits into two parts: **(A)** elimination and **(B)** back substitution.

Both parts can be done by applying a finite number of **elementary operations**.

Since the elementary operations preserve the standard form of linear equations, we can trace the solution process by looking on the **augmented matrix**.

In terms of the augmented matrix, the elementary operations are **elementary row operations**.

Elementary row operations:

(1) to multiply a row by some $r \neq 0$; (2) to add a row multiplied by some $r \in \mathbb{R}$ to another row;

(3) to interchange two rows.

Remark. The rows are added and multiplied by scalars as vectors (namely, **row vectors**):

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \mid b_1 \\ a_{21} & a_{22} & \dots & a_{2n} \mid b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \mid b_m \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{pmatrix},$$

where $\mathbf{v}_i = (a_{i1} \ a_{i2} \ \dots \ a_{in} \mid b_i)$ is a row vector.

Operation 1: to multiply the *i*th row by $r \neq 0$:

Operation 2: to add the *i*th row multiplied by *r* to the *j*th row:

Operation 3: to interchange the *i*th row with the *j*th row:

The goal of the Gaussian elimination is to convert the augmented matrix into **row echelon form**:

- all the entries below the staircase line are zero;
- boxed entries, called **pivot** or **lead entries**, are equal to 1;
 - each circled star correspond to a free variable.

Strict triangular form is a particular case of row echelon form that can occur for systems of *n* equations in *n* variables:

Matrix of coefficients

The original system of linear equations is **consistent** if there is no leading entry in the rightmost column of the augmented matrix in row echelon form.

Inconsistent system

The goal of the **Gauss-Jordan reduction** is to convert the augmented matrix into **reduced row echelon form**:

- all entries below the staircase line are zero;
- each pivot entry is 1, the other entries in its column are zero;
 - each circled star correspond to a free variable.

Example 1.
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 10\\ x_2 + 2x_3 + 3x_4 = 6 \end{cases}$$

Augmented matrix:
$$\begin{pmatrix} 1 & 2 & 3 & 4 & | & 10\\ 0 & 1 & 2 & 3 & | & 6 \end{pmatrix}$$

The matrix is in row echelon form. To convert it into reduced row echelon form, add -2 times the 2nd row to the 1st row:

$$\begin{pmatrix} \boxed{1} & 0 & -1 & -2 & | & -2 \\ 0 & \boxed{1} & 2 & 3 & | & 6 \end{pmatrix}$$
 x₃ and x₄ are free variables
$$\begin{cases} x_1 - x_3 - 2x_4 = -2 \\ x_2 + 2x_3 + 3x_4 = 6 \end{cases} \iff \begin{cases} x_1 = x_3 + 2x_4 - 2 \\ x_2 = -2x_3 - 3x_4 + 6 \end{cases}$$

System of linear equations:

$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 10 \\ x_2 + 2x_3 + 3x_4 = 6 \end{cases}$$

General solution:

$$\begin{cases} x_1 = t + 2s - 2 \\ x_2 = -2t - 3s + 6 \\ x_3 = t \\ x_4 = s \end{cases} \quad (t, s \in \mathbb{R})$$

Example 2.
$$\begin{cases} y+3z=0\\ x+y-2z=0\\ x+2y+az=0 \end{cases} (a \in \mathbb{R})$$

The system is **homogeneous** (all right-hand sides are zeros). Therefore it is consistent (x = y = z = 0 is a solution).

Augmented matrix: $\begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}$

$$\left(egin{array}{cccc} 0 & 1 & 3 & 0 \ 1 & 1 & -2 & 0 \ 1 & 2 & a & 0 \end{array}
ight)$$

Since the 1st row cannot serve as a pivotal one, we interchange it with the 2nd row:

$$\begin{pmatrix} 0 & 1 & 3 & 0 \\ 1 & 1 & -2 & 0 \\ 1 & 2 & a & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 1 & 2 & a & 0 \end{pmatrix}$$

Now we can start the elimination. First add -1 times the 1st row to the 3rd row:

$$\begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 1 & 2 & a & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 1 & a + 2 & | & 0 \end{pmatrix}$$

The 2nd row is our new pivotal row. Add -1 times the 2nd row to the 3rd row:

$$\begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 1 & a+2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 0 & a-1 & | & 0 \end{pmatrix}$$

At this point row reduction is divided into two cases. **Case 1:** $a \neq 1$. In this case, multiply the 3rd row by $(a-1)^{-1}$:

$$\begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 0 & a - 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \boxed{1} & 1 & -2 & | & 0 \\ 0 & \boxed{1} & 3 & | & 0 \\ 0 & 0 & \boxed{1} & | & 0 \end{pmatrix}$$

The matrix is converted into row echelon form. We proceed towards reduced row echelon form. Add -3 times the 3rd row to the 2nd row:

$$\begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix}$$

Add 2 times the 3rd row to the 1st row: $\begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix}$

Finally, add -1 times the 2nd row to the 1st row: $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

Thus x = y = z = 0 is the only solution.

Case 2: a = 1. In this case, the matrix is already in row echelon form:

$$\begin{pmatrix} \boxed{1} & 1 & -2 & 0 \\ 0 & \boxed{1} & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

To get reduced row echelon form, add -1 times the 2nd row to the 1st row:

$$\begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \boxed{1} & 0 & -5 & | & 0 \\ 0 & \boxed{1} & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

z is a free variable.

$$\begin{cases} x - 5z = 0 \\ y + 3z = 0 \end{cases} \iff \begin{cases} x = 5z \\ y = -3z \end{cases}$$

System of linear equations:

$$\begin{cases} y+3z=0\\ x+y-2z=0\\ x+2y+az=0 \end{cases}$$

Solution: If $a \neq 1$ then (x, y, z) = (0, 0, 0); if a = 1 then (x, y, z) = (5t, -3t, t), $t \in \mathbb{R}$.

Applications

Problem 1 Find the point of intersection of the lines x - y = -2 and 2x + 3y = 6 in \mathbb{R}^2 .

$$\begin{cases} x - y = -2\\ 2x + 3y = 6 \end{cases}$$

Problem 2 Find the point of intersection of the planes x - y = 2, 2x - y - z = 3, and x + y + z = 6 in \mathbb{R}^3 .

$$\begin{cases} x - y = 2\\ 2x - y - z = 3\\ x + y + z = 6 \end{cases}$$

Method of undetermined coefficients often involves solving systems of linear equations.

Problem 3. Find a quadratic polynomial p(x) such that p(1) = 4, p(2) = 3, and p(3) = 4.

Suppose that
$$p(x) = ax^2 + bx + c$$
. Then
 $p(1) = a + b + c$, $p(2) = 4a + 2b + c$,
 $p(3) = 9a + 3b + c$.

$$\begin{cases} a+b+c = 4\\ 4a+2b+c = 3\\ 9a+3b+c = 4 \end{cases}$$

Traffic flow

Problem. Determine the amount of traffic between each of the four intersections.

Traffic flow

Traffic flow

At each intersection, the incoming traffic has to match the outgoing traffic.

 Intersection A:
 $x_4 + 610 = x_1 + 450$

 Intersection B:
 $x_1 + 400 = x_2 + 640$

 Intersection C:
 $x_2 + 600 = x_3$

 Intersection D:
 $x_3 = x_4 + 520$

$$\begin{cases} x_4 + 610 = x_1 + 450 \\ x_1 + 400 = x_2 + 640 \\ x_2 + 600 = x_3 \\ x_3 = x_4 + 520 \end{cases}$$

$$\iff \begin{cases} -x_1 + x_4 = -160\\ x_1 - x_2 = 240\\ x_2 - x_3 = -600\\ x_3 - x_4 = 520 \end{cases}$$

Stress analysis of a truss

Problem. Assume that the leftmost and rightmost joints are fixed. Find the forces acting on each member of the truss.

Truss bridge

Let $|f_k|$ be the magnitude of the force in the *k*th member. $f_k > 0$ if the member is under tension. $f_k < 0$ if the member is under compression.

Static equilibrium at the joint A: horizontal projection: $-\frac{1}{\sqrt{2}}f_1 + f_4 + \frac{1}{\sqrt{2}}f_5 = 0$ vertical projection: $-\frac{1}{\sqrt{2}}f_1 - f_3 - \frac{1}{\sqrt{2}}f_5 = 0$

Static equilibrium at the joint B: horizontal projection: $-f_4 + f_8 = 0$ vertical projection: $-f_7 = 0$

Static equilibrium at the joint C: horizontal projection: $-f_8 - \frac{1}{\sqrt{2}}f_9 + \frac{1}{\sqrt{2}}f_{12} = 0$ vertical projection: $-\frac{1}{\sqrt{2}}f_9 - f_{11} - \frac{1}{\sqrt{2}}f_{12} = 0$ Static equilibrium at the joint D: horizontal projection: $-f_2 + f_6 = 0$ vertical projection: $f_3 - 10 = 0$

Static equilibrium at the joint E: horizontal projection: $-\frac{1}{\sqrt{2}}f_5 - f_6 + \frac{1}{\sqrt{2}}f_9 + f_{10} = 0$ vertical projection: $\frac{1}{\sqrt{2}}f_5 + f_7 + \frac{1}{\sqrt{2}}f_9 - 15 = 0$

Static equilibrium at the joint F: horizontal projection: $-f_{10} + f_{13} = 0$ vertical projection: $f_{11} - 20 = 0$

$$\begin{cases} -\frac{1}{\sqrt{2}}f_1 + f_4 + \frac{1}{\sqrt{2}}f_5 = 0\\ -\frac{1}{\sqrt{2}}f_1 - f_3 - \frac{1}{\sqrt{2}}f_5 = 0\\ -f_4 + f_8 = 0\\ -f_7 = 0\\ -f_8 - \frac{1}{\sqrt{2}}f_9 + \frac{1}{\sqrt{2}}f_{12} = 0\\ -\frac{1}{\sqrt{2}}f_9 - f_{11} - \frac{1}{\sqrt{2}}f_{12} = 0\\ -f_2 + f_6 = 0\\ f_3 = 10\\ -\frac{1}{\sqrt{2}}f_5 - f_6 + \frac{1}{\sqrt{2}}f_9 + f_{10} = 0\\ \frac{1}{\sqrt{2}}f_5 + f_7 + \frac{1}{\sqrt{2}}f_9 = 15\\ -f_{10} + f_{13} = 0\\ f_{11} = 20 \end{cases}$$