> Math 304-504
> Linear Algebra
> Lecture 4:
> Another application of systems of linear equations.
> Matrix algebra.

Electrical network

Problem. Determine the amount of current in each branch of the network.

Electrical network

Electrical network

Kirchhof's law \#1 (junction rule): at every node the sum of the incoming currents equals the sum of the outgoing currents.

Electrical network

Node A : $\quad i_{1}=i_{2}+i_{3}$
Node $B: \quad i_{2}+i_{3}=i_{1}$

Electrical network

Kirchhof's law \#2 (loop rule): around every loop the algebraic sum of all voltages is zero.

Ohm's law: for every resistor the voltage drop E, the current i, and the resistance R satisfy $E=i R$.

$$
\begin{aligned}
\text { Top loop: } & 9-i_{2}-4 i_{1}=0 \\
\text { Bottom loop: } & 4-2 i_{3}+i_{2}-3 i_{3}=0 \\
\text { Big loop: } & 4-2 i_{3}-4 i_{1}+9-3 i_{3}=0
\end{aligned}
$$

Remark: The 3rd equation is the sum of the first two equations.

$$
\begin{aligned}
& \left\{\begin{array}{l}
i_{1}=i_{2}+i_{3} \\
9-i_{2}-4 i_{1}=0 \\
4-2 i_{3}+i_{2}-3 i_{3}=0
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
i_{1}-i_{2}-i_{3}=0 \\
4 i_{1}+i_{2}=9 \\
-i_{2}+5 i_{3}=4
\end{array}\right.
\end{aligned}
$$

Matrices

Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

Notation: $A=\left(a_{i j}\right)_{1 \leq i \leq n, 1 \leq j \leq m}$ or simply $A=\left(a_{i j}\right)$ if the dimensions are known.

An n-dimensional vector can be represented as a $1 \times n$ matrix (row vector) or as an $n \times 1$ matrix (column vector):

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad\left(\begin{array}{c}
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

An $m \times n$ matrix $A=\left(a_{i j}\right)$ can be regarded as a column of n-dimensional row vectors or as a row of m-dimensional column vectors:

$$
A=\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right), \quad \mathbf{v}_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)
$$

$$
A=\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right), \quad \mathbf{w}_{j}=\left(\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\vdots \\
a_{m j}
\end{array}\right)
$$

Vector algebra

Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be n-dimensional vectors, and $r \in \mathbb{R}$ be a scalar.

Vector sum: $\mathbf{a}+\mathbf{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)$
Scalar multiple: $\quad r \mathbf{a}=\left(r a_{1}, r a_{2}, \ldots, r a_{n}\right)$
Zero vector: $\quad \mathbf{0}=(0,0, \ldots, 0)$
Negative of a vector: $\quad-\mathbf{b}=\left(-b_{1},-b_{2}, \ldots,-b_{n}\right)$
Vector difference:
$\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})=\left(a_{1}-b_{1}, a_{2}-b_{2}, \ldots, a_{n}-b_{n}\right)$

Given n-dimensional vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ and scalars $r_{1}, r_{2}, \ldots, r_{k}$, the expression

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}
$$

is called a linear combination of vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$.
Also, vector addition and scalar multiplication are called linear operations.

Matrix algebra

Definition. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be $m \times n$ matrices. The sum $A+B$ is defined to be the $m \times n$ matrix $C=\left(c_{i j}\right)$ such that $c_{i j}=a_{i j}+b_{i j}$ for all indices i, j.

That is, two matrices with the same dimensions can be added by adding their corresponding entries.

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)+\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right)=\left(\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22} \\
a_{31}+b_{31} & a_{32}+b_{32}
\end{array}\right)
$$

Definition. Given an $m \times n$ matrix $A=\left(a_{i j}\right)$ and a number r, the scalar multiple $r A$ is defined to be the $m \times n$ matrix $D=\left(d_{i j}\right)$ such that $d_{i j}=r a_{i j}$ for all indices i, j.

That is, to multiply a matrix by a scalar r, one multiplies each entry of the matrix by r.

$$
r\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{lll}
r a_{11} & r a_{12} & r a_{13} \\
r a_{21} & r a_{22} & r a_{23} \\
r a_{31} & r a_{32} & r a_{33}
\end{array}\right)
$$

The $m \times n$ zero matrix (all entries are zeros) is denoted $O_{m n}$ or simply O.

Negative of a matrix: $-A$ is defined as $(-1) A$. Matrix difference: $A-B$ is defined as $A+(-B)$.

As far as the linear operations (addition and scalar multiplication) are concerned, the $m \times n$ matrices
can be regarded as mn-dimensional vectors.

Examples

$$
\begin{aligned}
& A=\left(\begin{array}{rrr}
3 & 2 & -1 \\
1 & 1 & 1
\end{array}\right), \quad B=\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 1
\end{array}\right), \\
& C=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right), \quad D=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

$$
A+B=\left(\begin{array}{lll}
5 & 2 & 0 \\
1 & 2 & 2
\end{array}\right), \quad A-B=\left(\begin{array}{rrr}
1 & 2 & -2 \\
1 & 0 & 0
\end{array}\right)
$$

$$
2 C=\left(\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right), \quad 3 D=\left(\begin{array}{ll}
3 & 3 \\
0 & 3
\end{array}\right)
$$

$2 C+3 D=\left(\begin{array}{ll}7 & 3 \\ 0 & 5\end{array}\right), \quad A+D$ is not defined.

Properties of linear operations

$$
\begin{aligned}
& (A+B)+C=A+(B+C) \\
& A+B=B+A \\
& A+O=O+A=A \\
& A+(-A)=(-A)+A=O \\
& r(s A)=(r s) A \\
& r(A+B)=r A+r B \\
& (r+s) A=r A+s A \\
& 1 A=A \\
& 0 A=O
\end{aligned}
$$

Dot product

Definition. The dot product of n-dimensional vectors $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is a scalar

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\sum_{k=1}^{n} x_{k} y_{k}
$$

The dot product is also called the scalar product.

Matrix multiplication

The product of matrices A and B is defined if the number of columns in A matches the number of rows in B.

Definition. Let $A=\left(a_{i k}\right)$ be an $m \times n$ matrix and $B=\left(b_{k j}\right)$ be an $n \times p$ matrix. The product $A B$ is defined to be the $m \times p$ matrix $C=\left(c_{i j}\right)$ such that $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$ for all indices i, j.

That is, matrices are multiplied row by column:

$$
\left(\begin{array}{ccc}
* & * & * \\
* & * & *
\end{array}\right)\left(\begin{array}{cc|cc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right)=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & *
\end{array}\right)
$$

$$
\begin{gathered}
A=\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right), \quad \mathbf{v}_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right) ; \\
B=\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{p}\right), \quad \mathbf{w}_{j}=\left(\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{n j}
\end{array}\right) . \\
\Longrightarrow A B=\left(\begin{array}{cccc}
\mathbf{v}_{1} \cdot \mathbf{w}_{1} & \mathbf{v}_{1} \cdot \mathbf{w}_{2} & \ldots & \mathbf{v}_{1} \cdot \mathbf{w}_{p} \\
\mathbf{v}_{2} \cdot \mathbf{w}_{1} & \mathbf{v}_{2} \cdot \mathbf{w}_{2} & \ldots & \mathbf{v}_{2} \cdot \mathbf{w}_{p} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{v}_{m} \cdot \mathbf{w}_{1} & \mathbf{v}_{m} \cdot \mathbf{w}_{2} & \ldots & \mathbf{v}_{m} \cdot \mathbf{w}_{p}
\end{array}\right) .
\end{gathered}
$$

Examples.

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\sum_{k=1}^{n} x_{k} y_{k}\right)
$$

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\begin{array}{cccc}
y_{1} x_{1} & y_{1} x_{2} & \cdots & y_{1} x_{n} \\
y_{2} x_{1} & y_{2} x_{2} & \ldots & y_{2} x_{n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{n} x_{1} & y_{n} x_{2} & \cdots & y_{n} x_{n}
\end{array}\right) .
$$

Example.

$$
\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 2 & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & 3 & 1 & 1 \\
-2 & 5 & 6 & 0 \\
1 & 7 & 4 & 1
\end{array}\right)=\left(\begin{array}{cccc}
-3 & 1 & 3 & 0 \\
-3 & 17 & 16 & 1
\end{array}\right)
$$

Any system of linear equations can be rewritten as a matrix equation.
$\left\{\begin{array}{c}a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\ \cdots \cdots+a_{m n} x_{n}=b_{m}\end{array}\right.$
$\Longleftrightarrow\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right)$

Properties of matrix multiplication:

$(A B) C=A(B C)$
$(A+B) C=A C+B C$
$C(A+B)=C A+C B$
$(r A) B=A(r B)=r(A B)$
(associative law)
(distributive law \#1)
(distributive law \#2)
(Any of the above identities holds provided that matrix sums and products are well defined.)

If A and B are $n \times n$ matrices, then both $A B$ and $B A$ are well defined $n \times n$ matrices.
However, in general, $A B \neq B A$.
Example. Let $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
Then $A B=\left(\begin{array}{ll}2 & 2 \\ 0 & 1\end{array}\right), \quad B A=\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)$.

