Math 304–504 Linear Algebra Lecture 4: Another application of systems of linear equations. Matrix algebra.

Problem. Determine the amount of current in each branch of the network.

Kirchhof's law #1 (junction rule): at every node the sum of the incoming currents equals the sum of the outgoing currents.

Node A: $i_1 = i_2 + i_3$ Node B: $i_2 + i_3 = i_1$

Kirchhof's law #2 (loop rule): around every loop the algebraic sum of all voltages is zero.

Ohm's law: for every resistor the voltage drop E, the current *i*, and the resistance *R* satisfy E = iR.

Top loop:
$$9 - i_2 - 4i_1 = 0$$

Bottom loop: $4 - 2i_3 + i_2 - 3i_3 = 0$
Big loop: $4 - 2i_3 - 4i_1 + 9 - 3i_3 = 0$

Remark: The 3rd equation is the sum of the first two equations.

$$\begin{cases} i_1 = i_2 + i_3 \\ 9 - i_2 - 4i_1 = 0 \\ 4 - 2i_3 + i_2 - 3i_3 = 0 \end{cases}$$

$$\iff \begin{cases} i_1 - i_2 - i_3 = 0\\ 4i_1 + i_2 = 9\\ -i_2 + 5i_3 = 4 \end{cases}$$

Matrices

Definition. An **m-by-n matrix** is a rectangular array of numbers that has *m* rows and *n* columns:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Notation: $A = (a_{ij})_{1 \le i \le n, 1 \le j \le m}$ or simply $A = (a_{ij})$ if the dimensions are known.

An *n*-dimensional vector can be represented as a $1 \times n$ matrix (row vector) or as an $n \times 1$ matrix (column vector):

$$(x_1, x_2, \ldots, x_n)$$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

An $m \times n$ matrix $A = (a_{ij})$ can be regarded as a column of *n*-dimensional row vectors or as a row of *m*-dimensional column vectors:

$$A = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{pmatrix}, \quad \mathbf{v}_i = (a_{i1}, a_{i2}, \dots, a_{in})$$
$$A = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n), \quad \mathbf{w}_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

Vector algebra

Let $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$ be *n*-dimensional vectors, and $r \in \mathbb{R}$ be a scalar.

Vector sum: $\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$ Scalar multiple: $r\mathbf{a} = (ra_1, ra_2, \dots, ra_n)$ Zero vector: $\mathbf{0} = (0, 0, \dots, 0)$ Negative of a vector: $-\mathbf{b} = (-b_1, -b_2, \dots, -b_n)$ Vector difference: $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b}) = (a_1 - b_1, a_2 - b_2, \dots, a_n - b_n)$ Given *n*-dimensional vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ and scalars r_1, r_2, \dots, r_k , the expression

$$r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_k\mathbf{v}_k$$

is called a **linear combination** of vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$.

Also, *vector addition* and *scalar multiplication* are called **linear operations**.

Matrix algebra

Definition. Let $A = (a_{ij})$ and $B = (b_{ij})$ be $m \times n$ matrices. The **sum** A + B is defined to be the $m \times n$ matrix $C = (c_{ij})$ such that $c_{ij} = a_{ij} + b_{ij}$ for all indices i, j.

That is, two matrices with the same dimensions can be added by adding their corresponding entries.

$$egin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{pmatrix} + egin{pmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \ b_{31} & b_{32} \end{pmatrix} = egin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \ a_{21} + b_{21} & a_{22} + b_{22} \ a_{31} + b_{31} & a_{32} + b_{32} \end{pmatrix}$$

Definition. Given an $m \times n$ matrix $A = (a_{ij})$ and a number r, the scalar multiple rA is defined to be the $m \times n$ matrix $D = (d_{ij})$ such that $d_{ij} = ra_{ij}$ for all indices i, j.

That is, to multiply a matrix by a scalar r, one multiplies each entry of the matrix by r.

$$r\begin{pmatrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\a_{31} & a_{32} & a_{33}\end{pmatrix} = \begin{pmatrix}ra_{11} & ra_{12} & ra_{13}\\ra_{21} & ra_{22} & ra_{23}\\ra_{31} & ra_{32} & ra_{33}\end{pmatrix}$$

The $m \times n$ **zero matrix** (all entries are zeros) is denoted O_{mn} or simply O.

Negative of a matrix: -A is defined as (-1)A. Matrix **difference**: A - B is defined as A + (-B).

As far as the *linear operations* (addition and scalar multiplication) are concerned, the $m \times n$ matrices can be regarded as *mn*-dimensional vectors.

Examples

$$A = \begin{pmatrix} 3 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix},$$
$$C = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

$$A + B = \begin{pmatrix} 5 & 2 & 0 \\ 1 & 2 & 2 \end{pmatrix}, \qquad A - B = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 0 & 0 \end{pmatrix},$$
$$2C = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}, \qquad 3D = \begin{pmatrix} 3 & 3 \\ 0 & 3 \end{pmatrix},$$
$$2C + 3D = \begin{pmatrix} 7 & 3 \\ 0 & 5 \end{pmatrix}, \qquad A + D \text{ is not defined.}$$

Properties of linear operations

$$(A + B) + C = A + (B + C)$$

$$A + B = B + A$$

$$A + O = O + A = A$$

$$A + (-A) = (-A) + A = O$$

$$r(sA) = (rs)A$$

$$r(A + B) = rA + rB$$

$$(r + s)A = rA + sA$$

$$1A = A$$

$$0A = O$$

Dot product

Definition. The **dot product** of *n*-dimensional vectors $\mathbf{x} = (x_1, x_2, ..., x_n)$ and $\mathbf{y} = (y_1, y_2, ..., y_n)$ is a scalar

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{k=1}^n x_k y_k.$$

The dot product is also called the scalar product.

Matrix multiplication

The product of matrices A and B is defined if the number of columns in A matches the number of rows in B.

Definition. Let $A = (a_{ik})$ be an $m \times n$ matrix and $B = (b_{kj})$ be an $n \times p$ matrix. The **product** AB is defined to be the $m \times p$ matrix $C = (c_{ij})$ such that $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ for all indices i, j.

That is, matrices are multiplied row by column:

$$\begin{pmatrix} * & * & * \\ \hline \ast & \ast & \ast \end{pmatrix} \begin{pmatrix} * & * & \ast & \ast \\ * & * & \ast & \ast \\ * & \ast & \ast & \ast \end{pmatrix} = \begin{pmatrix} * & * & * & \ast \\ * & \ast & \ast & \ast \\ * & \ast & \ast & \ast \end{pmatrix}$$

$$A = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{pmatrix}, \quad \mathbf{v}_i = (a_{i1}, a_{i2}, \dots, a_{in});$$

$$B = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_p), \quad \mathbf{w}_j = \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{pmatrix}.$$

$$\implies AB = \begin{pmatrix} \mathbf{v}_1 \cdot \mathbf{w}_1 & \mathbf{v}_1 \cdot \mathbf{w}_2 & \dots & \mathbf{v}_1 \cdot \mathbf{w}_p \\ \mathbf{v}_2 \cdot \mathbf{w}_1 & \mathbf{v}_2 \cdot \mathbf{w}_2 & \dots & \mathbf{v}_2 \cdot \mathbf{w}_p \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{v}_m \cdot \mathbf{w}_1 & \mathbf{v}_m \cdot \mathbf{w}_2 & \dots & \mathbf{v}_m \cdot \mathbf{w}_p \end{pmatrix}$$

I

Examples. (x_1, x_2, \ldots, x_n) $\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{pmatrix} = (\sum_{k=1}^n x_k y_k),$ $\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} (x_1, x_2, \dots, x_n) = \begin{pmatrix} y_1 x_1 & y_1 x_2 & \dots & y_1 x_n \\ y_2 x_1 & y_2 x_2 & \dots & y_2 x_n \\ \vdots & \vdots & \ddots & \vdots \\ y_n x_1 & y_n x_2 & \dots & y_n x_n \end{pmatrix}.$

Example.

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 3 & 1 & 1 \\ -2 & 5 & 6 & 0 \\ 1 & 7 & 4 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 1 & 3 & 0 \\ -3 & 17 & 16 & 1 \end{pmatrix}$$

Any system of linear equations can be rewritten as a matrix equation.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$\iff \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Properties of matrix multiplication:

$$(AB)C = A(BC)$$
(associative law) $(A+B)C = AC + BC$ (distributive law #1) $C(A+B) = CA + CB$ (distributive law #2) $(rA)B = A(rB) = r(AB)$

(Any of the above identities holds provided that matrix sums and products are well defined.)

If A and B are $n \times n$ matrices, then both AB and BA are well defined $n \times n$ matrices.

However, in general, $AB \neq BA$.

Example. Let
$$A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Then
$$AB = \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}$$
, $BA = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$.