Linear Algebra Lecture 5:

Math 304-504

Matrix algebra (continued). Diagonal matrices.

Inverse matrix.

Matrix addition

Definition. Let $A = (a_{ij})$ and $B = (b_{ij})$ be $m \times n$ matrices. The **sum** A + B is defined to be the $m \times n$ matrix $C = (c_{ij})$ such that $c_{ij} = a_{ij} + b_{ij}$ for all indices i, j.

That is, two matrices with the same dimensions can be added by adding their corresponding entries.

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \\ a_{31} + b_{31} & a_{32} + b_{32} \end{pmatrix}$$

Scalar multiplication

Definition. Given an $m \times n$ matrix $A = (a_{ij})$ and a number r, the **scalar multiple** rA is defined to be the $m \times n$ matrix $D = (d_{ij})$ such that $d_{ij} = ra_{ij}$ for all indices i, j.

That is, to multiply a matrix by a scalar r, one multiplies each entry of the matrix by r.

$$r\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} ra_{11} & ra_{12} & ra_{13} \\ ra_{21} & ra_{22} & ra_{23} \\ ra_{31} & ra_{32} & ra_{33} \end{pmatrix}$$

The $m \times n$ **zero matrix** (all entries are zeros) is denoted O_{mn} or simply O.

Negative of a matrix: -A is defined as (-1)A. Matrix **difference**: A - B is defined as A + (-B).

As far as the *linear operations* (addition and scalar multiplication) are concerned, the $m \times n$ matrices can be regarded as mn-dimensional vectors.

Properties of linear operations

$$(A + B) + C = A + (B + C)$$

 $A + B = B + A$
 $A + O = O + A = A$
 $A + (-A) = (-A) + A = O$
 $r(sA) = (rs)A$
 $r(A + B) = rA + rB$

(r+s)A = rA + sA

1 A = A

0A = O

Dot product

Definition. The **dot product** of *n*-dimensional vectors $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ is a scalar

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{k=1}^n x_k y_k.$$

The dot product is also called the **scalar product**.

Matrix multiplication

Definition. Let $A = (a_{ik})$ be an $m \times n$ matrix and $B = (b_{kj})$ be an $n \times p$ matrix. The **product** AB is defined to be the $m \times p$ matrix $C = (c_{ij})$ such that $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ for all indices i, j.

That is, matrices are multiplied **row by column**: c_{ij} is the dot product of the *i*th row of A and the *j*th column of B.

$$\begin{pmatrix} * & * & * \\ * & * & * \end{pmatrix} \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} = \begin{pmatrix} * & * & * \\ * & * & * \end{pmatrix}$$

$$A = \begin{pmatrix} \frac{a_{11} & a_{12} & \dots & a_{1n}}{a_{21} & a_{22} & \dots & a_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \hline a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{pmatrix}$$

$$B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{np} \end{pmatrix} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_p)$$

$$B = \begin{pmatrix} b_{21} & b_{22} & \dots & b_{2p} \\ \vdots & \ddots & \vdots & \dots & b_{np} \end{pmatrix} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_p)$$

$$\implies AB = \begin{pmatrix} \mathbf{v}_1 \cdot \mathbf{w}_1 & \mathbf{v}_1 \cdot \mathbf{w}_2 & \dots & \mathbf{v}_1 \cdot \mathbf{w}_p \\ \mathbf{v}_2 \cdot \mathbf{w}_1 & \mathbf{v}_2 \cdot \mathbf{w}_2 & \dots & \mathbf{v}_2 \cdot \mathbf{w}_p \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{v}_m \cdot \mathbf{w}_1 & \mathbf{v}_m \cdot \mathbf{w}_2 & \dots & \mathbf{v}_m \cdot \mathbf{w}_p \end{pmatrix}$$

Any system of linear equations can be represented as a matrix equation:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases} \iff A\mathbf{x} = \mathbf{b},$$

where

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases} \iff A\mathbf{x} = \mathbf{b}$$

Another representation of this system:

$$x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} + \cdots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Theorem The above system is consistent if and only if the vector \mathbf{b} is a *linear combination* of the column vectors of A.

Properties of matrix multiplication:

$$(AB)C = A(BC)$$
 (associative law)
 $(A+B)C = AC + BC$ (distributive law #1)
 $C(A+B) = CA + CB$ (distributive law #2)

$$(rA)B = A(rB) = r(AB)$$

Any of the above identities holds provided that matrix sums and products are well defined.

If A and B are $n \times n$ matrices, then both AB and BA are well defined $n \times n$ matrices.

However, in general, $AB \neq BA$.

Example. Let
$$A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Then
$$AB = \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}$$
, $BA = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$.

If AB does equal BA, we say that the matrices A and B **commute**.

Problem. Let A and B be arbitrary $n \times n$ matrices. Is it true that $(A - B)(A + B) = A^2 - B^2$?

$$(A - B)(A + B) = (A - B)A + (A - B)B$$

= $(AA - BA) + (AB - BB)$
= $A^2 + AB - BA - B^2$

Hence $(A - B)(A + B) = A^2 - B^2$ if and only if A commutes with B.

Diagonal matrices

If $A = (a_{ij})$ is a square matrix, then the entries a_{ii} are called **diagonal entries**. A square matrix is called **diagonal** if all non-diagonal entries are zeros.

Example.
$$\begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
, denoted diag $(7, 1, 2)$.

Let
$$A = \operatorname{diag}(s_1, s_2, \dots, s_n)$$
, $B = \operatorname{diag}(t_1, t_2, \dots, t_n)$.
Then $A + B = \operatorname{diag}(s_1 + t_1, s_2 + t_2, \dots, s_n + t_n)$, $rA = \operatorname{diag}(rs_1, rs_2, \dots, rs_n)$.

Example.

$$\begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} -7 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

Theorem Let
$$A = \operatorname{diag}(s_1, s_2, \ldots, s_n)$$
, $B = \operatorname{diag}(t_1, t_2, \ldots, t_n)$.

Then
$$A + B = \operatorname{diag}(s_1 + t_1, s_2 + t_2, \dots, s_n + t_n),$$

 $rA = \operatorname{diag}(rs_1, rs_2, \dots, rs_n).$
 $AB = \operatorname{diag}(s_1t_1, s_2t_2, \dots, s_nt_n).$

In particular, diagonal matrices always commute.

Example.

$$\begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 7a_{11} & 7a_{12} & 7a_{13} \\ a_{21} & a_{22} & a_{23} \\ 2a_{31} & 2a_{32} & 2a_{33} \end{pmatrix}$$

Theorem Let $D = \operatorname{diag}(d_1, d_2, \dots, d_m)$ and A be an $m \times n$ matrix. Then the matrix DA is obtained from A by multiplying the ith row by d_i for $i = 1, 2, \dots, m$:

$$A = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{pmatrix} \implies DA = \begin{pmatrix} d_1 \mathbf{v}_1 \\ d_2 \mathbf{v}_2 \\ \vdots \\ d_m \mathbf{v}_m \end{pmatrix}$$

Example.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 7a_{11} & a_{12} & 2a_{13} \\ 7a_{21} & a_{22} & 2a_{23} \\ 7a_{31} & a_{32} & 2a_{33} \end{pmatrix}$$

Theorem Let $D = \operatorname{diag}(d_1, d_2, \dots, d_n)$ and A be an $m \times n$ matrix. Then the matrix AD is obtained from A by multiplying the ith column by d_i for $i = 1, 2, \dots, n$:

$$A = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n)$$

$$\implies AD = (d_1\mathbf{w}_1, d_2\mathbf{w}_2, \dots, d_n\mathbf{w}_n)$$

Identity matrix

Definition. The **identity matrix** (or **unit matrix**) is a diagonal matrix with all diagonal entries equal to 1. The $n \times n$ identity matrix is denoted I_n or simply I.

$$I_1=(1), \quad I_2=egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}, \quad I_3=egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}.$$

In general,
$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$
.

Theorem. Let A be an arbitrary $m \times n$ matrix. Then $I_m A = AI_n = A$.

Transpose of a matrix

Definition. Given a matrix A, the **transpose** of A, denoted A^T , is the matrix whose rows are columns of A (and whose columns are rows of A). That is, if $A = (a_{ij})$ then $A^T = (b_{ij})$, where $b_{ij} = a_{ji}$.

Examples.
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$
, $\begin{pmatrix} 7 \\ 8 \\ 0 \end{pmatrix}^T = (7, 8, 9), \qquad \begin{pmatrix} 4 & 7 \\ 7 & 0 \end{pmatrix}^T = \begin{pmatrix} 4 & 7 \\ 7 & 0 \end{pmatrix}.$

Definition. A square matrix A is said to be symmetric if $A^T = A$.

Properties of transposes:

• $(A_1A_2...A_k)^T = A_{\nu}^T...A_{\nu}^TA_{\nu}^T$

•
$$(A^T)^T = A$$

$$(A) = A$$

$$\bullet \ (A+B)^T = A^T + B^T$$

$$\bullet (A+B)^T = A^T$$

• $(AB)^T = B^T A^T$

$$\bullet (rA)^T = rA^T$$

Proposition Given any matrix A, the products AA^T and A^TA are well defined symmetric matrices.

Proof: Suppose A is an $m \times n$ matrix. Then A^T is an $n \times m$ matrix. Hence AA^T and A^TA are well defined. AA^T is an $m \times m$ matrix while A^TA is an $n \times n$ matrix.

$$(AA^T)^T = (A^T)^T A^T = AA^T,$$

 $(A^TA)^T = A^T(A^T)^T = A^TA.$

Inverse matrix

Let $\mathcal{M}_n(\mathbb{R})$ denote the set of all $n \times n$ matrices with real entries. We can **add**, **subtract**, and **multiply** elements of $\mathcal{M}_n(\mathbb{R})$. What about **division**?

Definition. Let $A \in \mathcal{M}_n(\mathbb{R})$. Suppose there exists an $n \times n$ matrix B such that

$$AB = BA = I_n$$
.

Then the matrix A is called **invertible** and B is called the **inverse** of A (denoted A^{-1}).

A non-invertible square matrix is called **singular**.

$$AA^{-1} = A^{-1}A = I$$

Basic properties of inverse matrices:

- If $B = A^{-1}$ then $A = B^{-1}$. In other words, if A is invertible, so is A^{-1} , and $A = (A^{-1})^{-1}$.
- If AB = CA = I for some matrices $B, C \in \mathcal{M}_n(\mathbb{R})$ then $B = C = A^{-1}$.

Indeed, B = IB = (CA)B = C(AB) = CI = C.

- If matrices $A, B \in \mathcal{M}_n(\mathbb{R})$ are invertible, so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.
- $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I,$ $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I.$
 - Similarly, $(A_1A_2...A_k)^{-1} = A_k^{-1}...A_2^{-1}A_1^{-1}$.