Math 304-504
 Linear Algebra

Lecture 5:

Matrix algebra (continued).
Diagonal matrices. Inverse matrix.

Matrix addition

Definition. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be $m \times n$ matrices. The sum $A+B$ is defined to be the $m \times n$ matrix $C=\left(c_{i j}\right)$ such that $c_{i j}=a_{i j}+b_{i j}$ for all indices i, j.

That is, two matrices with the same dimensions can be added by adding their corresponding entries.

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)+\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right)=\left(\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22} \\
a_{31}+b_{31} & a_{32}+b_{32}
\end{array}\right)
$$

Scalar multiplication

Definition. Given an $m \times n$ matrix $A=\left(a_{i j}\right)$ and a number r, the scalar multiple $r A$ is defined to be the $m \times n$ matrix $D=\left(d_{i j}\right)$ such that $d_{i j}=r a_{i j}$ for all indices i, j.

That is, to multiply a matrix by a scalar r, one multiplies each entry of the matrix by r.

$$
r\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{lll}
r a_{11} & r a_{12} & r a_{13} \\
r a_{21} & r a_{22} & r a_{23} \\
r a_{31} & r a_{32} & r a_{33}
\end{array}\right)
$$

The $m \times n$ zero matrix (all entries are zeros) is denoted $O_{m n}$ or simply O.

Negative of a matrix: $-A$ is defined as $(-1) A$. Matrix difference: $A-B$ is defined as $A+(-B)$.

As far as the linear operations (addition and scalar multiplication) are concerned, the $m \times n$ matrices
can be regarded as mn-dimensional vectors.

Properties of linear operations

$$
\begin{aligned}
& (A+B)+C=A+(B+C) \\
& A+B=B+A \\
& A+O=O+A=A \\
& A+(-A)=(-A)+A=O \\
& r(s A)=(r s) A \\
& r(A+B)=r A+r B \\
& (r+s) A=r A+s A \\
& 1 A=A \\
& 0 A=O
\end{aligned}
$$

Dot product

Definition. The dot product of n-dimensional vectors $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is a scalar

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\sum_{k=1}^{n} x_{k} y_{k}
$$

The dot product is also called the scalar product.

Matrix multiplication

Definition. Let $A=\left(a_{i k}\right)$ be an $m \times n$ matrix and $B=\left(b_{k j}\right)$ be an $n \times p$ matrix. The product $A B$ is defined to be the $m \times p$ matrix $C=\left(c_{i j}\right)$ such that $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$ for all indices i, j.

That is, matrices are multiplied row by column: $c_{i j}$ is the dot product of the i th row of A and the j th column of B.

$$
\left(\begin{array}{ccc}
* & * & * \\
* & * & *
\end{array}\right)\left(\begin{array}{cc|cc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right)=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & *
\end{array}\right)
$$

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\hline a_{21} & a_{22} & \ldots & a_{2 n} \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right) \\
& B=\left(\begin{array}{c|c|c|c}
b_{11} & b_{12} & \ldots & b_{1 p} \\
b_{21} & b_{22} & \ldots & b_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n p}
\end{array}\right)=\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{p}\right) \\
& \Longrightarrow A B=\left(\begin{array}{cccc}
\mathbf{v}_{1} \cdot \mathbf{w}_{1} & \mathbf{v}_{1} \cdot \mathbf{w}_{2} & \ldots & \mathbf{v}_{1} \cdot \mathbf{w}_{p} \\
\mathbf{v}_{2} \cdot \mathbf{w}_{1} & \mathbf{v}_{2} \cdot \mathbf{w}_{2} & \ldots & \mathbf{v}_{2} \cdot \mathbf{w}_{p} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{v}_{m} \cdot \mathbf{w}_{1} & \mathbf{v}_{m} \cdot \mathbf{w}_{2} & \ldots & \mathbf{v}_{m} \cdot \mathbf{w}_{p}
\end{array}\right)
\end{aligned}
$$

Any system of linear equations can be represented as a matrix equation:
$\left\{\begin{array}{c}a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\ \cdots \cdots \cdots \\ a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}\end{array} \Longleftrightarrow A \mathbf{x}=\mathbf{b}\right.$,
where
$A=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right)$

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots \cdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array} \Longleftrightarrow A \mathbf{x}=\mathbf{b}\right.
$$

Another representation of this system:
$x_{1}\left(\begin{array}{c}a_{11} \\ a_{21} \\ \vdots \\ a_{m 1}\end{array}\right)+x_{2}\left(\begin{array}{c}a_{12} \\ a_{22} \\ \vdots \\ a_{m 2}\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}a_{1 n} \\ a_{2 n} \\ \vdots \\ a_{m n}\end{array}\right)=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right)$
Theorem The above system is consistent if and only if the vector \mathbf{b} is a linear combination of the column vectors of A.

Properties of matrix multiplication:

$(A B) C=A(B C)$
$(A+B) C=A C+B C$
$C(A+B)=C A+C B$
$(r A) B=A(r B)=r(A B)$
(associative law)
(distributive law \#1)
(distributive law \#2)

Any of the above identities holds provided that matrix sums and products are well defined.

If A and B are $n \times n$ matrices, then both $A B$ and $B A$ are well defined $n \times n$ matrices. However, in general, $A B \neq B A$.

Example. Let $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right), \quad B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
Then $A B=\left(\begin{array}{ll}2 & 2 \\ 0 & 1\end{array}\right), \quad B A=\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)$.

If $A B$ does equal $B A$, we say that the matrices A and B commute.

Problem. Let A and B be arbitrary $n \times n$ matrices.
Is it true that $(A-B)(A+B)=A^{2}-B^{2}$?

$$
\begin{aligned}
(A-B)(A+B) & =(A-B) A+(A-B) B \\
& =(A A-B A)+(A B-B B) \\
& =A^{2}+A B-B A-B^{2}
\end{aligned}
$$

Hence $(A-B)(A+B)=A^{2}-B^{2}$ if and only if A commutes with B.

Diagonal matrices

If $A=\left(a_{i j}\right)$ is a square matrix, then the entries $a_{i i}$ are called diagonal entries. A square matrix is called diagonal if all non-diagonal entries are zeros.

Example. $\left(\begin{array}{lll}7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$, denoted $\operatorname{diag}(7,1,2)$.
Let $A=\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right), B=\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.
Then $A+B=\operatorname{diag}\left(s_{1}+t_{1}, s_{2}+t_{2}, \ldots, s_{n}+t_{n}\right)$,

$$
r A=\operatorname{diag}\left(r s_{1}, r s_{2}, \ldots, r s_{n}\right)
$$

Example.

$$
\left(\begin{array}{lll}
7 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 3
\end{array}\right)=\left(\begin{array}{rrr}
-7 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 6
\end{array}\right)
$$

Theorem Let $A=\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, $B=\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.
Then $A+B=\operatorname{diag}\left(s_{1}+t_{1}, s_{2}+t_{2}, \ldots, s_{n}+t_{n}\right)$,

$$
\begin{gathered}
r A=\operatorname{diag}\left(r s_{1}, r s_{2}, \ldots, r s_{n}\right) \\
A B=\operatorname{diag}\left(s_{1} t_{1}, s_{2} t_{2}, \ldots, s_{n} t_{n}\right) .
\end{gathered}
$$

In particular, diagonal matrices always commute.

Example.
$\left(\begin{array}{lll}7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)=\left(\begin{array}{ccc}7 a_{11} & 7 a_{12} & 7 a_{13} \\ a_{21} & a_{22} & a_{23} \\ 2 a_{31} & 2 a_{32} & 2 a_{33}\end{array}\right)$
Theorem Let $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ and A be an $m \times n$ matrix. Then the matrix $D A$ is obtained from A by multiplying the i th row by d_{i} for $i=1,2, \ldots, m$:

$$
A=\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right) \Longrightarrow D A=\left(\begin{array}{c}
d_{1} \mathbf{v}_{1} \\
d_{2} \mathbf{v}_{2} \\
\vdots \\
d_{m} \mathbf{v}_{m}
\end{array}\right)
$$

Example.

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{lll}
7 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)=\left(\begin{array}{lll}
7 a_{11} & a_{12} & 2 a_{13} \\
7 a_{21} & a_{22} & 2 a_{23} \\
7 a_{31} & a_{32} & 2 a_{33}
\end{array}\right)
$$

Theorem Let $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ and A be an $m \times n$ matrix. Then the matrix $A D$ is obtained from A by multiplying the i th column by d_{i} for $i=1,2, \ldots, n$:

$$
\begin{gathered}
A=\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right) \\
\Longrightarrow \quad A D=\left(d_{1} \mathbf{w}_{1}, d_{2} \mathbf{w}_{2}, \ldots, d_{n} \mathbf{w}_{n}\right)
\end{gathered}
$$

Identity matrix

Definition. The identity matrix (or unit matrix) is a diagonal matrix with all diagonal entries equal to 1 . The $n \times n$ identity matrix is denoted I_{n} or simply I.

$$
I_{1}=(1), \quad I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

In general, $\quad I=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1\end{array}\right)$.
Theorem. Let A be an arbitrary $m \times n$ matrix.
Then $I_{m} A=A I_{n}=A$.

Transpose of a matrix

Definition. Given a matrix A, the transpose of A, denoted A^{T}, is the matrix whose rows are columns of A (and whose columns are rows of A). That is, if $A=\left(a_{i j}\right)$ then $A^{T}=\left(b_{i j}\right)$, where $b_{i j}=a_{j i}$.
Examples. $\quad\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)^{T}=\left(\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right)$,
$\left(\begin{array}{l}7 \\ 8 \\ 9\end{array}\right)^{T}=(7,8,9), \quad\left(\begin{array}{ll}4 & 7 \\ 7 & 0\end{array}\right)^{T}=\left(\begin{array}{ll}4 & 7 \\ 7 & 0\end{array}\right)$.
Definition. A square matrix A is said to be symmetric if $A^{T}=A$.

Properties of transposes:

- $\left(A^{T}\right)^{T}=A$
- $(A+B)^{T}=A^{T}+B^{T}$
- $(r A)^{T}=r A^{T}$
- $(A B)^{T}=B^{T} A^{T}$
- $\left(A_{1} A_{2} \ldots A_{k}\right)^{T}=A_{k}^{T} \ldots A_{2}^{T} A_{1}^{T}$

Proposition Given any matrix A, the products $A A^{T}$ and $A^{T} A$ are well defined symmetric matrices.

Proof: Suppose A is an $m \times n$ matrix. Then A^{T} is an $n \times m$ matrix. Hence $A A^{T}$ and $A^{T} A$ are well defined. $A A^{T}$ is an $m \times m$ matrix while $A^{T} A$ is an $n \times n$ matrix.

$$
\begin{aligned}
& \left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}, \\
& \left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A .
\end{aligned}
$$

Inverse matrix

Let $\mathcal{M}_{n}(\mathbb{R})$ denote the set of all $n \times n$ matrices with real entries. We can add, subtract, and multiply elements of $\mathcal{M}_{n}(\mathbb{R})$. What about division?

Definition. Let $A \in \mathcal{M}_{n}(\mathbb{R})$. Suppose there exists an $n \times n$ matrix B such that

$$
A B=B A=I_{n} .
$$

Then the matrix A is called invertible and B is called the inverse of A (denoted A^{-1}).
A non-invertible square matrix is called singular.

$$
A A^{-1}=A^{-1} A=1
$$

Basic properties of inverse matrices:

- If $B=A^{-1}$ then $A=B^{-1}$. In other words, if A is invertible, so is A^{-1}, and $A=\left(A^{-1}\right)^{-1}$.
- If $A B=C A=I$ for some matrices
$B, C \in \mathcal{M}_{n}(\mathbb{R})$ then $B=C=A^{-1}$.
Indeed, $B=I B=(C A) B=C(A B)=C I=C$.
- If matrices $A, B \in \mathcal{M}_{n}(\mathbb{R})$ are invertible, so is $A B$, and $(A B)^{-1}=B^{-1} A^{-1}$.
$\left(B^{-1} A^{-1}\right)(A B)=B^{-1}\left(A^{-1} A\right) B=B^{-1} I B=B^{-1} B=I$, $(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I$.
- Similarly, $\left(A_{1} A_{2} \ldots A_{k}\right)^{-1}=A_{k}^{-1} \ldots A_{2}^{-1} A_{1}^{-1}$.

