Math 304–504 Linear Algebra

Lecture 6: Inverse matrix (continued).

Identity matrix

Definition. The **identity matrix** (or **unit matrix**) is a diagonal matrix with all diagonal entries equal to 1. The $n \times n$ identity matrix is denoted I_n or simply I.

$$I_{1} = (1), \quad I_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

n general,
$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Theorem. Let A be an arbitrary $m \times n$ matrix. Then $I_m A = A I_n = A$.

Inverse matrix

Definition. Let A be an $n \times n$ matrix. The **inverse** of A is an $n \times n$ matrix, denoted A^{-1} , such that

$$AA^{-1} = A^{-1}A = I.$$

If A^{-1} exists then the matrix A is called **invertible**. Otherwise A is called **singular**.

Basic properties of inverse matrices:

- The inverse matrix (if it exists) is unique.
- If A is invertible, so is A^{-1} , and $(A^{-1})^{-1} = A$.

• If $n \times n$ matrices A_1, A_2, \ldots, A_k are invertible, so is $A_1A_2 \ldots A_k$, and $(A_1A_2 \ldots A_k)^{-1} = A_k^{-1} \ldots A_2^{-1}A_1^{-1}$. System of *n* linear equations in *n* variables:

$$\begin{cases} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2} \\ \dots \dots \\ a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = b_{n} \end{cases}$$

$$\iff \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{pmatrix}$$

Theorem If the matrix $A = (a_{ij})$ is invertible then the system has a unique solution.

Theorem If an $n \times n$ matrix A is invertible, then for any *n*-dimensional column vector **b** the matrix equation $A\mathbf{x} = \mathbf{b}$ has a unique solution, which is $\mathbf{x} = A^{-1}\mathbf{b}$.

Indeed,
$$A(A^{-1}\mathbf{b}) = (AA^{-1})\mathbf{b} = I_n\mathbf{b} = \mathbf{b}$$
.
Conversely, if $A\mathbf{x} = \mathbf{b}$ then
 $\mathbf{x} = I_n\mathbf{x} = (A^{-1}A)\mathbf{x} = A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{b}$.

Corollary If the matrix equation $A\mathbf{x} = \mathbf{0}$ has a nonzero solution then *A* is not invertible.

Examples

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$BA = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

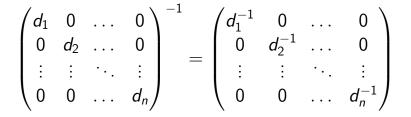
$$C^{2} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
Thus $A^{-1} = B, \quad B^{-1} = A, \text{ and } C^{-1} = C.$

Examples

$$D = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $E = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$.

$$D^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

It follows that D is a singular matrix as otherwise $D^2 = O \implies D^{-1}D^2 = D^{-1}O \implies D = O.$


$$E^2 = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} = 2E.$$

It follows that *E* is a singular matrix as otherwise $E^2 = 2E \implies E^2 E^{-1} = 2EE^{-1} \implies E = 2I.$

Inverting diagonal matrices

Theorem A diagonal matrix $D = \text{diag}(d_1, \ldots, d_n)$ is invertible if and only if all diagonal entries are nonzero: $d_i \neq 0$ for $1 \leq i \leq n$.

If D is invertible then $D^{-1} = \operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1})$.

Inverting diagonal matrices

Theorem A diagonal matrix $D = \text{diag}(d_1, \ldots, d_n)$ is invertible if and only if all diagonal entries are nonzero: $d_i \neq 0$ for $1 \leq i \leq n$.

If D is invertible then $D^{-1} = \operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1})$.

Proof: If all $d_i \neq 0$ then, clearly, $\operatorname{diag}(d_1, \ldots, d_n) \operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1}) = \operatorname{diag}(1, \ldots, 1) = I$, $\operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1}) \operatorname{diag}(d_1, \ldots, d_n) = \operatorname{diag}(1, \ldots, 1) = I$. Now suppose that $d_i = 0$ for some *i*. Then for any $n \times n$ matrix *B* the *i*th row of the matrix *DB* is a

zero row. Hence $DB \neq I$.

Inverting 2×2 matrices

Definition. The **determinant** of a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is det A = ad - bc.

Theorem A matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible if and only if det $A \neq 0$.

If det $A \neq 0$ then $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$

Theorem A matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible if and only if det $A \neq 0$. If det $A \neq 0$ then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Proof: It is easy to verify that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (ad - bc)I_2.$ Clearly, O is not invertible since $OB = O \neq I$ for any 2×2 matrix B. Besides, if A is invertible then $AB = O \implies A^{-1}AB = A^{-1}O \implies B = O.$

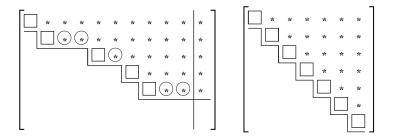
Fundamental results on inverse matrices

Theorem 1 Given a square matrix *A*, the following are equivalent:

(i) A is invertible;

(ii) $\mathbf{x} = \mathbf{0}$ is the only solution of the matrix equation $A\mathbf{x} = \mathbf{0}$; (iii) the row echelon form of A has no zero rows;

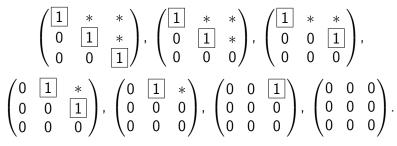
(iv) the reduced row echelon form of A is the identity matrix.


Theorem 2 Suppose that a sequence of elementary row operations converts a matrix *A* into the identity matrix.

Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1} .

Theorem 3 For any $n \times n$ matrices A and B,

$$BA = I \iff AB = I.$$


Row echelon form of a square matrix:

noninvertible case

invertible case

Row echelon form of a 3×3 matrix:

Reduced row echelon form of a 3×3 matrix:

$$\begin{pmatrix} \boxed{1} & 0 & 0 \\ 0 & \boxed{1} & 0 \\ 0 & 0 & \boxed{1} \end{pmatrix}, \begin{pmatrix} \boxed{1} & 0 & * \\ 0 & \boxed{1} & * \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} \boxed{1} & * & 0 \\ 0 & 0 & \boxed{1} \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \boxed{1} & * \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \boxed{1} & * \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & \boxed{1} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Example.
$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}$$
.

To check whether A is invertible, we convert it to row echelon form.

Interchange the 1st row with the 2nd row:

$$\begin{pmatrix} 1 & 0 & 1 \\ 3 & -2 & 0 \\ -2 & 3 & 0 \end{pmatrix}$$

Add -3 times the 1st row to the 2nd row:

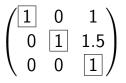
$$egin{pmatrix} 1 & 0 & 1 \ 0 & -2 & -3 \ -2 & 3 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & -3 \\ -2 & 3 & 0 \end{pmatrix}$$

Add 2 times the 1st row to the 3rd row:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & -3 \\ 0 & 3 & 2 \end{pmatrix}$$

Multiply the 2nd row by -1/2:


$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 3 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 3 & 2 \end{pmatrix}$$

Add -3 times the 2nd row to the 3rd row: $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 0 & -2.5 \end{pmatrix}$

Multiply the 3rd row by -2/5:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 0 & 1 \end{pmatrix}$$

We already know that the matrix A is invertible. Let's proceed towards reduced row echelon form. Add -3/2 times the 3rd row to the 2nd row: $\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$

 $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Add -1 times the 3rd row to the 1st row:

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

To obtain A^{-1} , we need to apply the following sequence of elementary row operations to the identity matrix:

- interchange the 1st row with the 2nd row,
- add -3 times the 1st row to the 2nd row,
- add 2 times the 1st row to the 3rd row,
- multiply the 2nd row by -1/2,
- add -3 times the 2nd row to the 3rd row,
- multiply the 3rd row by -2/5,
- add -3/2 times the 3rd row to the 2nd row,
- add -1 times the 3rd row to the 1st row.

A convenient way to compute the inverse matrix A^{-1} is to merge the matrices A and I into one 3×6 matrix $(A \mid I)$, and apply elementary row operations to this new matrix.

$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}, \qquad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(A \mid I) = \begin{pmatrix} 3 & -2 & 0 & | & 1 & 0 & 0 \\ 1 & 0 & 1 & | & 0 & 1 & 0 \\ -2 & 3 & 0 & | & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & -2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Interchange the 1st row with the 2nd row:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 3 & -2 & 0 & 1 & 0 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Add -3 times the 1st row to the 2nd row:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -2 & -3 & 1 & -3 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -2 & -3 & 1 & -3 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Add 2 times the 1st row to the 3rd row:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -2 & -3 & 1 & -3 & 0 \\ 0 & 3 & 2 & 0 & 2 & 1 \end{pmatrix}$$

Multiply the 2nd row by -1/2:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 3 & 2 & 0 & 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 1 & | & 0 & 1 & 0 \\ 0 & 1 & 1.5 & | & -0.5 & 1.5 & 0 \\ 0 & 3 & 2 & | & 0 & 2 & 1 \end{pmatrix}$$

Add -3 times the 2nd row to the 3rd row:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & -2.5 & 1.5 & -2.5 & 1 \end{pmatrix}$$

Multiply the 3rd row by -2/5:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4 \end{pmatrix}$$

Add -3/2 times the 3rd row to the 2nd row: $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0.4 & 0 & 0.6 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4 \end{pmatrix}$

Add -1 times the 3rd row to the 1st row: $\begin{pmatrix} 1 & 0 & 0 & 0.6 & 0 & 0.4 \\ 0 & 1 & 0 & 0.4 & 0 & 0.6 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4 \end{pmatrix}$

Thus
$$\begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{3}{5} & 0 & \frac{2}{5} \\ \frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{3}{5} & 1 & -\frac{2}{5} \end{pmatrix}$$

.

That is,

$$\begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} \frac{3}{5} & 0 & \frac{2}{5} \\ \frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{3}{5} & 1 & -\frac{2}{5} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

 $\begin{pmatrix} \frac{3}{5} & 0 & \frac{2}{5} \\ \frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{3}{5} & 1 & -\frac{2}{5} \end{pmatrix} \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$