Math 304-504
Linear Algebra
Lecture 6:
Inverse matrix (continued).

Identity matrix

Definition. The identity matrix (or unit matrix) is a diagonal matrix with all diagonal entries equal to 1 .
The $n \times n$ identity matrix is denoted I_{n} or simply I.

$$
I_{1}=(1), \quad I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

In general, $\quad I=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1\end{array}\right)$.
Theorem. Let A be an arbitrary $m \times n$ matrix.
Then $I_{m} A=A I_{n}=A$.

Inverse matrix

Definition. Let A be an $n \times n$ matrix. The inverse of A is an $n \times n$ matrix, denoted A^{-1}, such that

$$
A A^{-1}=A^{-1} A=I .
$$

If A^{-1} exists then the matrix A is called invertible. Otherwise A is called singular.

Basic properties of inverse matrices:

- The inverse matrix (if it exists) is unique.
- If A is invertible, so is A^{-1}, and $\left(A^{-1}\right)^{-1}=A$.
- If $n \times n$ matrices $A_{1}, A_{2}, \ldots, A_{k}$ are invertible, so is $A_{1} A_{2} \ldots A_{k}$, and $\left(A_{1} A_{2} \ldots A_{k}\right)^{-1}=A_{k}^{-1} \ldots A_{2}^{-1} A_{1}^{-1}$.

System of n linear equations in n variables:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots+a_{n n} x_{n}=b_{n}
\end{array}\right.
$$

$$
\Longleftrightarrow\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

Theorem If the matrix $A=\left(a_{i j}\right)$ is invertible then the system has a unique solution.

Theorem If an $n \times n$ matrix A is invertible, then for any n-dimensional column vector \mathbf{b} the matrix equation $A \mathbf{x}=\mathbf{b}$ has a unique solution, which is $\mathbf{x}=A^{-1} \mathbf{b}$.

Indeed, $A\left(A^{-1} \mathbf{b}\right)=\left(A A^{-1}\right) \mathbf{b}=I_{n} \mathbf{b}=\mathbf{b}$.
Conversely, if $A \mathbf{x}=\mathbf{b}$ then

$$
\mathbf{x}=I_{n} \mathbf{x}=\left(A^{-1} A\right) \mathbf{x}=A^{-1}(A \mathbf{x})=A^{-1} \mathbf{b}
$$

Corollary If the matrix equation $A \mathbf{x}=\mathbf{0}$ has a nonzero solution then A is not invertible.

Examples

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad B=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right), \quad C=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

$$
A B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
B A=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
C^{2}=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Thus $A^{-1}=B, B^{-1}=A$, and $C^{-1}=C$.

Examples

$$
D=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad E=\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right) .
$$

$$
D^{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

It follows that D is a singular matrix as otherwise

$$
D^{2}=O \Longrightarrow D^{-1} D^{2}=D^{-1} O \Longrightarrow D=O
$$

$$
E^{2}=\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{rr}
2 & -2 \\
-2 & 2
\end{array}\right)=2 E .
$$

It follows that E is a singular matrix as otherwise

$$
E^{2}=2 E \Longrightarrow E^{2} E^{-1}=2 E E^{-1} \Longrightarrow E=2 I
$$

Inverting diagonal matrices

Theorem A diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is invertible if and only if all diagonal entries are nonzero: $d_{i} \neq 0$ for $1 \leq i \leq n$.
If D is invertible then $D^{-1}=\operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right)$.

$$
\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
d_{1}^{-1} & 0 & \ldots & 0 \\
0 & d_{2}^{-1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}^{-1}
\end{array}\right)
$$

Inverting diagonal matrices

Theorem A diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is invertible if and only if all diagonal entries are nonzero: $d_{i} \neq 0$ for $1 \leq i \leq n$.
If D is invertible then $D^{-1}=\operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right)$.
Proof: If all $d_{i} \neq 0$ then, clearly, $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right)=\operatorname{diag}(1, \ldots, 1)=I$, $\operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right) \operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)=\operatorname{diag}(1, \ldots, 1)=I$.

Now suppose that $d_{i}=0$ for some i. Then for any $n \times n$ matrix B the i th row of the matrix $D B$ is a zero row. Hence $D B \neq 1$.

Inverting 2×2 matrices

Definition. The determinant of a 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\operatorname{det} A=a d-b c$.

Theorem A matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $\operatorname{det} A \neq 0$.

If $\operatorname{det} A \neq 0$ then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Theorem A matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $\operatorname{det} A \neq 0$. If $\operatorname{det} A \neq 0$ then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Proof: It is easy to verify that
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=(a d-b c) I_{2}$.
Clearly, O is not invertible since $O B=O \neq 1$ for any 2×2 matrix B. Besides, if A is invertible then

$$
A B=O \Longrightarrow A^{-1} A B=A^{-1} O \Longrightarrow B=O
$$

Fundamental results on inverse matrices

Theorem 1 Given a square matrix A, the following are equivalent:
(i) A is invertible;
(ii) $\mathbf{x}=\mathbf{0}$ is the only solution of the matrix equation $A \mathbf{x}=\mathbf{0}$;
(iii) the row echelon form of A has no zero rows;
(iv) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row operations converts a matrix A into the identity matrix.

Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1}.

Theorem 3 For any $n \times n$ matrices A and B,

$$
B A=I \Longleftrightarrow A B=I
$$

Row echelon form of a square matrix:

noninvertible case
invertible case

Row echelon form of a 3×3 matrix:

$$
\begin{gathered}
\left(\begin{array}{ccc}
\boxed{1} & * & * \\
0 & \boxed{1} & * \\
0 & 0 & \boxed{1}
\end{array}\right),\left(\begin{array}{ccc}
\boxed{1} & * & * \\
0 & \boxed{1} & * \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
\boxed{1} & * & * \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \\
\left(\begin{array}{ccc}
0 & 1 & * \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 1 & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Reduced row echelon form of a 3×3 matrix:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \boxed{1} & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
\boxed{1} & 0 & * \\
0 & \boxed{1} & * \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
\boxed{1} & * & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \\
& \left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 1 & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Example. $\quad A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right)$.
To check whether A is invertible, we convert it to row echelon form.
Interchange the 1st row with the 2 nd row:
$\left(\begin{array}{rrr}1 & 0 & 1 \\ 3 & -2 & 0 \\ -2 & 3 & 0\end{array}\right)$
Add -3 times the 1st row to the 2nd row:
$\left(\begin{array}{rrr}1 & 0 & 1 \\ 0 & -2 & -3 \\ -2 & 3 & 0\end{array}\right)$
$\left(\begin{array}{rrr}1 & 0 & 1 \\ 0 & -2 & -3 \\ -2 & 3 & 0\end{array}\right)$
Add 2 times the 1st row to the 3rd row:
$\left(\begin{array}{rrr}1 & 0 & 1 \\ 0 & -2 & -3 \\ 0 & 3 & 2\end{array}\right)$
Multiply the 2 nd row by $-1 / 2$:

$$
\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1.5 \\
0 & 3 & 2
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1.5 \\
0 & 3 & 2
\end{array}\right)
$$

Add -3 times the 2 nd row to the 3 rd row:
$\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 0 & -2.5\end{array}\right)$
Multiply the 3rd row by $-2 / 5$:

$$
\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1.5 \\
0 & 0 & 1
\end{array}\right)
$$

$\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 0 & 1\end{array}\right)$
We already know that the matrix A is invertible.
Let's proceed towards reduced row echelon form.
Add $-3 / 2$ times the 3 rd row to the 2 nd row:
$\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
Add -1 times the 3rd row to the 1st row:
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

To obtain A^{-1}, we need to apply the following sequence of elementary row operations to the identity matrix:

- interchange the 1 st row with the 2 nd row,
- add -3 times the 1 st row to the 2 nd row,
- add 2 times the 1 st row to the 3 rd row,
- multiply the 2 nd row by $-1 / 2$,
- add -3 times the 2 nd row to the 3 rd row,
- multiply the 3 rd row by $-2 / 5$,
- add $-3 / 2$ times the 3 rd row to the 2 nd row,
- add -1 times the 3 rd row to the 1 st row.

A convenient way to compute the inverse matrix A^{-1} is to merge the matrices A and I into one 3×6 matrix $(A \mid I)$, and apply elementary row operations to this new matrix.
$A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right), \quad I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$(A \mid I)=\left(\begin{array}{rrr|rrr}3 & -2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1\end{array}\right)$

$$
\left(\begin{array}{rrr|rrr}
3 & -2 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Interchange the 1st row with the 2 nd row:

$$
\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
3 & -2 & 0 & 1 & 0 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Add -3 times the 1 st row to the 2 nd row:

$$
\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & -2 & -3 & 1 & -3 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$\left(\begin{array}{rrr|rrr}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -2 & -3 & 1 & -3 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1\end{array}\right)$
Add 2 times the 1 st row to the 3 rd row:
$\left(\begin{array}{rrr|rrr}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -2 & -3 & 1 & -3 & 0 \\ 0 & 3 & 2 & 0 & 2 & 1\end{array}\right)$
Multiply the 2 nd row by $-1 / 2$:

$$
\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\
0 & 3 & 2 & 0 & 2 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\
0 & 3 & 2 & 0 & 2 & 1
\end{array}\right)
$$

Add -3 times the 2nd row to the 3rd row:
$\left(\begin{array}{rrr|rrr}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & -2.5 & 1.5 & -2.5 & 1\end{array}\right)$
Multiply the 3rd row by $-2 / 5$:
$\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4\end{array}\right)$
$\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4\end{array}\right)$
Add $-3 / 2$ times the 3 rd row to the 2 nd row:
$\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0.4 & 0 & 0.6 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4\end{array}\right)$
Add -1 times the 3 rd row to the 1 st row:
$\left(\begin{array}{rrr|rrr}1 & 0 & 0 & 0.6 & 0 & 0.4 \\ 0 & 1 & 0 & 0.4 & 0 & 0.6 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4\end{array}\right)$

Thus

$$
\left(\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right)^{-1}=\left(\begin{array}{rrr}
\frac{3}{5} & 0 & \frac{2}{5} \\
\frac{2}{5} & 0 & \frac{3}{5} \\
-\frac{3}{5} & 1 & -\frac{2}{5}
\end{array}\right) .
$$

That is,

$$
\begin{aligned}
& \left(\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right)\left(\begin{array}{rrr}
\frac{3}{5} & 0 & \frac{2}{5} \\
\frac{2}{5} & 0 & \frac{3}{5} \\
-\frac{3}{5} & 1 & -\frac{2}{5}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& \left(\begin{array}{rrr}
\frac{3}{5} & 0 & \frac{2}{5} \\
\frac{2}{5} & 0 & \frac{3}{5} \\
-\frac{3}{5} & 1 & -\frac{2}{5}
\end{array}\right)\left(\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

