Math 304-504
Linear Algebra
Lecture 7:
Elementary matrices.
Determinants.

Inverse matrix

Definition. Let A be an $n \times n$ matrix. The inverse of A is an $n \times n$ matrix, denoted A^{-1}, such that

$$
A A^{-1}=A^{-1} A=I
$$

If A^{-1} exists then the matrix A is called invertible.
Otherwise A is called singular.

Inverting diagonal matrices

Theorem A diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is invertible if and only if all diagonal entries are nonzero: $d_{i} \neq 0$ for $1 \leq i \leq n$.
If D is invertible then $D^{-1}=\operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right)$.

$$
\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
d_{1}^{-1} & 0 & \ldots & 0 \\
0 & d_{2}^{-1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}^{-1}
\end{array}\right)
$$

Inverting 2×2 matrices

Definition. The determinant of a 2×2 matrix
$A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\operatorname{det} A=a d-b c$.
Theorem A matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $\operatorname{det} A \neq 0$.

If $\operatorname{det} A \neq 0$ then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Fundamental results on inverse matrices

Theorem 1 Given a square matrix A, the following are equivalent:
(i) A is invertible;
(ii) $\mathbf{x}=\mathbf{0}$ is the only solution of the matrix equation $A \mathbf{x}=\mathbf{0}$;
(iii) the row echelon form of A has no zero rows;
(iv) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row operations converts a matrix A into the identity matrix.

Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1}.

Theorem 3 For any $n \times n$ matrices A and B,

$$
B A=I \Longleftrightarrow A B=1
$$

Example. $\quad A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right)$.
A convenient way to compute the inverse matrix A^{-1} is to merge the matrices A and I into one 3×6 matrix $(A \mid I)$, and apply elementary row operations to this new matrix.
$A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right), \quad I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$(A \mid I)=\left(\begin{array}{rrr|rrr}3 & -2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1\end{array}\right)$
$(A \mid I)=\left(\begin{array}{rrr|rrr}3 & -2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1\end{array}\right)$
As soon as the left half of the 3×6 matrix is converted to the identity matrix, we have got the inverse matrix A^{-1} in the right half.

$$
\rightarrow\left(\begin{array}{rrr|rrr}
1 & 0 & 0 & \frac{3}{5} & 0 & \frac{2}{5} \\
0 & 1 & 0 & \frac{2}{5} & 0 & \frac{3}{5} \\
0 & 0 & 1 & -\frac{3}{5} & 1 & -\frac{2}{5}
\end{array}\right)
$$

Thus

$$
\left(\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right)^{-1}=\left(\begin{array}{rrr}
\frac{3}{5} & 0 & \frac{2}{5} \\
\frac{2}{5} & 0 & \frac{3}{5} \\
-\frac{3}{5} & 1 & -\frac{2}{5}
\end{array}\right) .
$$

That is,

$$
\begin{aligned}
& \left(\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right)\left(\begin{array}{rrr}
\frac{3}{5} & 0 & \frac{2}{5} \\
\frac{2}{5} & 0 & \frac{3}{5} \\
-\frac{3}{5} & 1 & -\frac{2}{5}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& \left(\begin{array}{rrr}
\frac{3}{5} & 0 & \frac{2}{5} \\
\frac{2}{5} & 0 & \frac{3}{5} \\
-\frac{3}{5} & 1 & -\frac{2}{5}
\end{array}\right)\left(\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Why does it work?

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left(\begin{array}{rrr}
a_{1} & a_{2} & a_{3} \\
2 b_{1} & 2 b_{2} & 2 b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right), \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1}+3 a_{1} & b_{2}+3 a_{2} & b_{3}+3 a_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right), \\
\\
\\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
c_{1} & c_{2} & c_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right) .
\end{gathered}
$$

Proposition Any elementary row operation can be simulated as left multiplication by a certain matrix.

Elementary matrices

$$
E=\left(\begin{array}{lllllll}
1 & & & & & & \\
& \ddots & & & & 0 & \\
& & 1 & & & & \\
& & & r & & & \\
& 0 & & & 1 & & \\
& & & & & 1
\end{array}\right) \text { row \#i }
$$

To obtain the matrix $E A$ from A, multiply the i th row by r. To obtain the matrix $A E$ from A, multiply the i th column by r.

Elementary matrices

$$
E=\left(\begin{array}{cccccc}
1 & & & & & \\
\vdots & \ddots & & & & O \\
0 & \cdots & 1 & & & \\
\vdots & & \vdots & \ddots & & \\
0 & \cdots & r & \cdots & 1 &
\end{array} \quad \text { row } \# i\right.
$$

To obtain the matrix $E A$ from A, add r times the i th row to the j th row. To obtain the matrix $A E$ from A, add r times the j th column to the i th column.

Elementary matrices

$$
E=\left(\begin{array}{ccccccc}
1 & & & & & O & \\
& \ddots & & & & & \\
& & 0 & \cdots & 1 & & \\
& & \vdots & \ddots & \vdots & & \\
& & 1 & \cdots & 0 & & \\
& O & & & & \ddots & \\
& O & & & & & 1
\end{array}\right) \text { row } \# i
$$

To obtain the matrix $E A$ from A, interchange the i th row with the j th row. To obtain $A E$ from A, interchange the i th column with the j th column.

Why does it work?

Assume that a square matrix A can be converted to the identity matrix by a sequence of elementary row operations. Then

$$
E_{k} E_{k-1} \ldots E_{2} E_{1} A=I
$$

where $E_{1}, E_{2}, \ldots, E_{k}$ are elementary matrices corresponding to those operations.

Applying the same sequence of operations to the identity matrix, we obtain the matrix

$$
B=E_{k} E_{k-1} \ldots E_{2} E_{1} I=E_{k} E_{k-1} \ldots E_{2} E_{1} .
$$

Thus $B A=I$, which implies that $B=A^{-1}$.

Problem Solve the matrix equation $X A+B=X$, where $A=\left(\begin{array}{rr}4 & -2 \\ 1 & 1\end{array}\right), \quad B=\left(\begin{array}{ll}5 & 2 \\ 3 & 0\end{array}\right)$.

Since B is a 2×2 matrix, it follows that $X A$ and X are also 2×2 matrices.

$$
\begin{gathered}
X A+B=X \Longleftrightarrow X-X A=B \\
\Longleftrightarrow X(I-A)=B \Longleftrightarrow X=B(I-A)^{-1}
\end{gathered}
$$

provided that $I-A$ is an invertible matrix.
$I-A=\left(\begin{array}{ll}-3 & 2 \\ -1 & 0\end{array}\right)$,

$$
I-A=\left(\begin{array}{ll}
-3 & 2 \\
-1 & 0
\end{array}\right)
$$

$$
\operatorname{det}(I-A)=(-3) \cdot 0-2 \cdot(-1)=2
$$

$$
(I-A)^{-1}=\frac{1}{2}\left(\begin{array}{ll}
0 & -2 \\
1 & -3
\end{array}\right)
$$

$$
X=B(I-A)^{-1}=\left(\begin{array}{ll}
5 & 2 \\
3 & 0
\end{array}\right) \frac{1}{2}\left(\begin{array}{ll}
0 & -2 \\
1 & -3
\end{array}\right)
$$

$$
=\frac{1}{2}\left(\begin{array}{ll}
5 & 2 \\
3 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & -2 \\
1 & -3
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
2 & -16 \\
0 & -6
\end{array}\right)=\left(\begin{array}{ll}
1 & -8 \\
0 & -3
\end{array}\right) .
$$

Determinants

Determinant is a scalar assigned to each square matrix.
Notation. The determinant of a matrix
$A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ is denoted $\operatorname{det} A$ or

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|
$$

Principal property: $\operatorname{det} A=0$ if and only if the matrix A is singular.

Definition in low dimensions

Definition. $\quad \operatorname{det}(a)=a, \quad\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$,
\(\left|\begin{array}{lll}a_{11} \& a_{12} \& a_{13}

a_{21} \& a_{22} \& a_{23}

a_{31} \& a_{32} \& a_{33}\end{array}\right|=\)| $11 a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-$ |
| ---: |
| |
| $-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}$. |

$+:\left(\begin{array}{ccc}\boxed{*} & * & * \\ * & * & * \\ * & * & \boxed{*}\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.
$-:\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.

Examples: 2×2 matrices

$$
\begin{aligned}
& \left|\begin{array}{rr}
1 & 0 \\
0 & 1
\end{array}\right|=1, \quad\left|\begin{array}{rr}
3 & 0 \\
0 & -4
\end{array}\right|=-12, \\
& \left|\begin{array}{rr}
-2 & 5 \\
0 & 3
\end{array}\right|=-6, \quad\left|\begin{array}{ll}
7 & 0 \\
5 & 2
\end{array}\right|=14, \\
& \left|\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right|=1, \quad\left|\begin{array}{ll}
0 & 0 \\
4 & 1
\end{array}\right|=0, \\
& \left|\begin{array}{ll}
-1 & 3 \\
-1 & 3
\end{array}\right|=0, \quad\left|\begin{array}{ll}
2 & 1 \\
8 & 4
\end{array}\right|=0 .
\end{aligned}
$$

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\begin{array}{r}
\\
a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}- \\
-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32} .
\end{array} \\
& \left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \rightarrow\left(\begin{array}{lll|ll}
a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\
a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\
a_{31} & a_{32} & a_{33} & a_{31} & a_{32}
\end{array}\right) \\
& +\left(\begin{array}{ccc|cc}
\hline 1 & 2 & 3 & * & * \\
* & 1 & 2 & 3 & * \\
* & * & 1 & 2 & 3
\end{array}\right)-\left(\begin{array}{ccc|cc}
* & * & 1 & 2 & 3 \\
* & 1 & 2 & 3 & * \\
1 & 2 & 3 & * & *
\end{array}\right)
\end{aligned}
$$

This rule works only for 3×3 matrices!

Examples: 3×3 matrices

$$
\begin{aligned}
& \left|\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right|=3 \cdot 0 \cdot 0+(-2) \cdot 1 \cdot(-2)+0 \cdot 1 \cdot 3- \\
& -0 \cdot 0 \cdot(-2)-(-2) \cdot 1 \cdot 0-3 \cdot 1 \cdot 3=4-9=-5, \\
& \left|\begin{array}{lrr}
1 & 4 & 6 \\
0 & 2 & 5 \\
0 & 0 & 3
\end{array}\right|=1 \cdot 2 \cdot 3+4 \cdot 5 \cdot 0+6 \cdot 0 \cdot 0- \\
& -6 \cdot 2 \cdot 0-4 \cdot 0 \cdot 3-1 \cdot 5 \cdot 0=1 \cdot 2 \cdot 3=6 .
\end{aligned}
$$

General definition

The general definition of the determinant is quite complicated as there are no simple explicit formula.
There are several approaches to defining determinants. Approach 1 (original): an explicit (but very complicated) formula.
Approach 2 (axiomatic): we formulate properties that the determinant should have. Approach 3 (inductive): the determinant of an $n \times n$ matrix is defined in terms of determinants of certain $(n-1) \times(n-1)$ matrices.
$\mathcal{M}_{n}(\mathbb{R})$: the set of $n \times n$ matrices with real entries.
Theorem There exists a unique function $\operatorname{det}: \mathcal{M}_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ (called the determinant) with the following properties:

- if a row of a matrix is multiplied by a scalar r, the determinant is also multiplied by r;
- if we add a row of a matrix multiplied by a scalar to another row, the determinant remains the same;
- if we interchange two rows of a matrix, the determinant changes its sign;
- $\operatorname{det} I=1$.

Corollary $\operatorname{det} A=0$ if and only if the matrix A is singular.

Example. $A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right), \operatorname{det} A=$?
We have transformed the matrix A into the identity matrix using elementary row operations.

- interchange the 1 st row with the 2 nd row,
- add -3 times the 1 st row to the 2 nd row,
- add 2 times the 1 st row to the 3 rd row,
- multiply the 2 nd row by $-1 / 2$,
- add -3 times the 2 nd row to the 3 rd row,
- multiply the 3 rd row by $-2 / 5$,
- add $-3 / 2$ times the 3 rd row to the 2 nd row,
- add -1 times the 3 rd row to the 1 st row.

Example. $\quad A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right), \operatorname{det} A=$?
We have transformed the matrix A into the identity matrix using elementary row operations.

These included two row multiplications, by $-1 / 2$ and by $-2 / 5$, and one row exchange.

It follows that

$$
\operatorname{det} I=-\left(-\frac{1}{2}\right)\left(-\frac{2}{5}\right) \operatorname{det} A=-\frac{1}{5} \operatorname{det} A .
$$

Hence $\operatorname{det} A=-5 \operatorname{det} I=-5$.

