Math 304–504 Linear Algebra

Lecture 8: Properties of determinants.

Determinant is a scalar assigned to each square matrix.

Notation. The determinant of a matrix $A = (a_{ij})_{1 \le i,j \le n}$ is denoted det A or

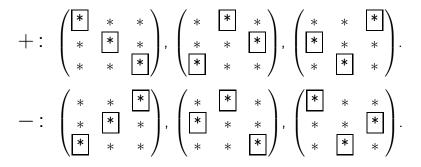
a_{11}	a ₁₂		a_{1n}	
<i>a</i> ₂₁	a 22	• • •	a 2n	
:	÷	•••	÷	•
<i>a</i> _{n1}	a _{n2}	•••	a _{nn}	

Principal property: det A = 0 if and only if the matrix A is singular.

Definition in low dimensions

Definition. det (a) = a,
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
,
 $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$

τ.



Example

$$\begin{vmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{vmatrix} = 3 \cdot 0 \cdot 0 + (-2) \cdot 1 \cdot (-2) + 0 \cdot 1 \cdot 3 - - 0 \cdot 0 \cdot (-2) - (-2) \cdot 1 \cdot 0 - 3 \cdot 1 \cdot 3 = -5$$

General definition

There are several approaches to defining determinants.

Approach 1 (original): an explicit (but very complicated) formula.

Approach 2 (axiomatic): we formulate properties that the determinant should have.

Approach 3 (inductive): the determinant of an $n \times n$ matrix is defined in terms of determinants of certain $(n-1) \times (n-1)$ matrices.

 $\mathcal{M}_n(\mathbb{R})$: the set of $n \times n$ matrices with real entries.

Theorem There exists a unique function det : $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ (called the determinant) with the following properties:

• if a row of a matrix is multiplied by a scalar r, the determinant is also multiplied by r;

• if we add a row of a matrix multiplied by a scalar to another row, the determinant remains the same;

• if we interchange two rows of a matrix, the determinant changes its sign;

• det I = 1.

Corollary det A = 0 if and only if the matrix A is singular.

Example.
$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}$$
, det $A = ?$

We had transformed the matrix A into the identity matrix using elementary row operations.

These included two row multiplications, by -1/2 and by -2/5, and one row exchange.

It follows that

det
$$I = -(-\frac{1}{2})(-\frac{2}{5}) \det A = -\frac{1}{5} \det A$$
.
Hence det $A = -5 \det I = -5$.

Permutations

Definition. A *permutation* on the set $\{1, 2, ..., n\}$ is a one-to-one map $\sigma : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$.

Notation.
$$\begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$
.
Examples. $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$.

Proposition. The number of all permutations on the set $\{1, 2, ..., n\}$ is $n! = 1 \cdot 2 \cdot ... \cdot n$.

[We have *n* ways to choose $\sigma(1)$, for any choice of $\sigma(1)$ we have n-1 ways to choose $\sigma(2)$, and so on.]

Given two permutations σ_1 and σ_2 on $\{1, 2, ..., n\}$, their composition $\sigma_1\sigma_2$, $\sigma_1\sigma_2(k) = \sigma_1(\sigma_2(k))$, is also a permutation on $\{1, 2, ..., n\}$.

A permutation that exchanges two elements and preserves the others is called a **transposition**.

Theorem Any permutation σ can be decomposed into the composition of several transpositions: $\sigma = \tau_1 \tau_2 \dots \tau_m$.

This decomposition is not unique. Even the number m of transpositions is not uniquely determined. However the parity of m is uniquely determined by the permutation σ . It is called the *parity* of σ .

Example. There are 6 permutations on
$$\{1, 2, 3\}$$
:
 $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$,
 $\sigma_4 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $\sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$, $\sigma_6 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$.

 σ_4 , σ_5 , and σ_6 are transpositions, hence they are odd. σ_1 is the identity map, hence it is even. $\sigma_2 = \sigma_5 \sigma_6$ and $\sigma_3 = \sigma_6 \sigma_5$, hence σ_2 and σ_3 are even. Definition. Given an $n \times n$ matrix $A = (a_{ij})$, the **determinant** of A is defined by

$$\det A = \sum_{\sigma} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)},$$

where σ runs over all permutations on $\{1, 2, ..., n\}$. Here $sgn(\sigma) = 1$ if the permutation σ is even and $sgn(\sigma) = -1$ if σ is odd.

Properties of determinants

• If one row of a matrix is multiplied by a scalar, the determinant is multiplied by the same scalar.

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ rc_1 & rc_2 & rc_3 \end{vmatrix} = r \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

• Suppose that matrices A, B, C are identical except for the *i*th row and the *i*th row of C is the sum of the *i*th rows of A and B.

Then det $A = \det B + \det C$.

$$\begin{vmatrix} a_1 + a_1' & a_2 + a_2' & a_3 + a_3' \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} + \begin{vmatrix} a_1' & a_2' & a_3' \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

• Interchanging two rows of a matrix changes the sign of its determinant.

• Suppose that a matrix *B* is obtained from a matrix *A* by permuting its rows.

Then det $B = \det A$ if the permutation is even and det $B = -\det A$ if the permutation is odd.

• If a matrix A has two identical rows then det A = 0.

$$egin{array}{c|cccc} a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ a_1 & a_2 & a_3 \end{array} = 0$$

• If a matrix A has two rows proportional then det A = 0.

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ ra_1 & ra_2 & ra_3 \end{vmatrix} = r \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \end{vmatrix} = 0$$

• Adding a scalar multiple of one row to another does not change the determinant of a matrix.

$$\begin{vmatrix} a_1 + rb_1 & a_2 + rb_2 & a_3 + rb_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \\ = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} + \begin{vmatrix} rb_1 & rb_2 & rb_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Definition. A square matrix is called **upper triangular** if all entries below the main diagonal are zeros.

• The determinant of an upper triangular matrix is equal to the product of its diagonal entries.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33}$$

• If $A = \operatorname{diag}(d_1, d_2, \dots, d_n)$ then det $A = d_1 d_2 \dots d_n$. In particular, det I = 1.

Determinant of the transpose

• If A is a square matrix then det $A^T = \det A$.

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Columns vs. rows

• If one column of a matrix is multiplied by a scalar, the determinant is multiplied by the same scalar.

• Interchanging two columns of a matrix changes the sign of its determinant.

• If a matrix A has two columns proportional then $\det A = 0$.

• Adding a scalar multiple of one column to another does not change the determinant of a matrix.

Submatrices

Definition. Given a matrix A, a $k \times k$ submatrix of A is a matrix obtained by specifying k columns and k rows of A and deleting the other columns and rows.

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 10 & 20 & 30 & 40 \\ 3 & 5 & 7 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} * & 2 & * & 4 \\ * & * & * & * \\ * & 5 & * & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 4 \\ 5 & 9 \end{pmatrix}$$

If A is an $n \times n$ matrix then A_{ij} denote the $(n-1) \times (n-1)$ submatrix obtained by deleting the *i*th row and the *j*th column.

Example.
$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}$$
.
 $A_{11} = \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix}$, $A_{12} = \begin{pmatrix} 1 & 1 \\ -2 & 0 \end{pmatrix}$, $A_{13} = \begin{pmatrix} 1 & 0 \\ -2 & 3 \end{pmatrix}$,
 $A_{21} = \begin{pmatrix} -2 & 0 \\ 3 & 0 \end{pmatrix}$, $A_{22} = \begin{pmatrix} 3 & 0 \\ -2 & 0 \end{pmatrix}$, $A_{23} = \begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix}$,
 $A_{31} = \begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}$, $A_{32} = \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}$, $A_{33} = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}$.

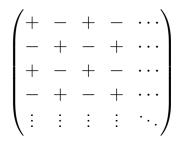
Row and column expansions

Theorem Let A be an $n \times n$ matrix. Then for any $1 \le k, m \le n$ we have that

$$\det A = \sum_{j=1}^{n} (-1)^{k+j} a_{kj} \det A_{kj},$$

(expansion by kth row)
 $\det A = \sum_{i=1}^{n} (-1)^{i+m} a_{im} \det A_{im}.$
(expansion by mth column)

Signs for row/column expansions



Example.
$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}$$
.

Expansion by the 1st row:

$$\begin{vmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{vmatrix} = 3 \begin{vmatrix} 0 & 1 \\ 3 & 0 \end{vmatrix} - (-2) \begin{vmatrix} 1 & 1 \\ -2 & 0 \end{vmatrix} = -5.$$

Expansion by the 2nd row:

$$\begin{vmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{vmatrix} = -1 \begin{vmatrix} -2 & 0 \\ 3 & 0 \end{vmatrix} - 1 \begin{vmatrix} 3 & -2 \\ -2 & 3 \end{vmatrix} = -5.$$

Example.
$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}$$
.

Expansion by the 2nd column:

$$\begin{vmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{vmatrix} = -(-2) \begin{vmatrix} 1 & 1 \\ -2 & 0 \end{vmatrix} - 3 \begin{vmatrix} 3 & 0 \\ 1 & 1 \end{vmatrix} = -5.$$

Expansion by the 3rd column:

$$\begin{vmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{vmatrix} = -1 \begin{vmatrix} 3 & -2 \\ -2 & 3 \end{vmatrix} = -5.$$