Math 304-504
Linear Algebra

Lecture 8:

Properties of determinants.

Determinant is a scalar assigned to each square matrix.
Notation. The determinant of a matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ is denoted $\operatorname{det} A$ or

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right| .
$$

Principal property: $\operatorname{det} A=0$ if and only if the matrix A is singular.

Definition in low dimensions

Definition. $\quad \operatorname{det}(a)=a, \quad\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$,
\(\left|\begin{array}{lll}a_{11} \& a_{12} \& a_{13}

a_{21} \& a_{22} \& a_{23}

a_{31} \& a_{32} \& a_{33}\end{array}\right|=\)| $11 a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-$ |
| ---: |
| |
| $-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}$. |

$+:\left(\begin{array}{ccc}\boxed{*} & * & * \\ * & * & * \\ * & * & \boxed{*}\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.
$-:\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.

Example

$$
\begin{aligned}
&\left|\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right|=3 \cdot 0 \cdot 0+(-2) \cdot 1 \cdot(-2)+0 \cdot 1 \cdot 3- \\
&-0 \cdot 0 \cdot(-2)-(-2) \cdot 1 \cdot 0-3 \cdot 1 \cdot 3=-5
\end{aligned}
$$

General definition

There are several approaches to defining determinants.
Approach 1 (original): an explicit (but very complicated) formula.
Approach 2 (axiomatic): we formulate properties that the determinant should have.
Approach 3 (inductive): the determinant of an $n \times n$ matrix is defined in terms of determinants of certain $(n-1) \times(n-1)$ matrices.
$\mathcal{M}_{n}(\mathbb{R})$: the set of $n \times n$ matrices with real entries.
Theorem There exists a unique function $\operatorname{det}: \mathcal{M}_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ (called the determinant) with the following properties:

- if a row of a matrix is multiplied by a scalar r, the determinant is also multiplied by r;
- if we add a row of a matrix multiplied by a scalar to another row, the determinant remains the same;
- if we interchange two rows of a matrix, the determinant changes its sign;
- $\operatorname{det} I=1$.

Corollary $\operatorname{det} A=0$ if and only if the matrix A is singular.

Example. $\quad A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right), \operatorname{det} A=$?
We had transformed the matrix A into the identity matrix using elementary row operations.

These included two row multiplications, by $-1 / 2$ and by $-2 / 5$, and one row exchange.

It follows that

$$
\operatorname{det} I=-\left(-\frac{1}{2}\right)\left(-\frac{2}{5}\right) \operatorname{det} A=-\frac{1}{5} \operatorname{det} A .
$$

Hence $\operatorname{det} A=-5 \operatorname{det} I=-5$.

Permutations

Definition. A permutation on the set $\{1,2, \ldots, n\}$ is a one-to-one map $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.
Notation. $\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ \sigma(1) & \sigma(2) & \ldots & \sigma(n)\end{array}\right)$.
Examples. $\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$.
Proposition. The number of all permutations on the set $\{1,2, \ldots, n\}$ is $n!=1 \cdot 2 \cdot \ldots \cdot n$.
[We have n ways to choose $\sigma(1)$, for any choice of $\sigma(1)$ we have $n-1$ ways to choose $\sigma(2)$, and so on.]

Given two permutations σ_{1} and σ_{2} on $\{1,2, \ldots, n\}$, their composition $\sigma_{1} \sigma_{2}, \sigma_{1} \sigma_{2}(k)=\sigma_{1}\left(\sigma_{2}(k)\right)$, is also a permutation on $\{1,2, \ldots, n\}$.
A permutation that exchanges two elements and preserves the others is called a transposition.
Theorem Any permutation σ can be decomposed into the composition of several transpositions:
$\sigma=\tau_{1} \tau_{2} \ldots \tau_{m}$.
This decomposition is not unique. Even the number m of transpositions is not uniquely determined. However the parity of m is uniquely determined by the permutation σ. It is called the parity of σ.

Example. There are 6 permutations on $\{1,2,3\}$:

$$
\begin{aligned}
& \sigma_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \sigma_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \sigma_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), \\
& \sigma_{4}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), \sigma_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right), \sigma_{6}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) .
\end{aligned}
$$

σ_{4}, σ_{5}, and σ_{6} are transpositions, hence they are odd. σ_{1} is the identity map, hence it is even. $\sigma_{2}=\sigma_{5} \sigma_{6}$ and $\sigma_{3}=\sigma_{6} \sigma_{5}$, hence σ_{2} and σ_{3} are even.

Definition. Given an $n \times n$ matrix $A=\left(a_{i j}\right)$, the determinant of A is defined by

$$
\operatorname{det} A=\sum_{\sigma} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{n \sigma(n)}
$$

where σ runs over all permutations on $\{1,2, \ldots, n\}$. Here $\operatorname{sgn}(\sigma)=1$ if the permutation σ is even and $\operatorname{sgn}(\sigma)=-1$ if σ is odd.

Properties of determinants

- If one row of a matrix is multiplied by a scalar, the determinant is multiplied by the same scalar.

$$
\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
r c_{1} & r c_{2} & r c_{3}
\end{array}\right|=r\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

- Suppose that matrices A, B, C are identical except for the i th row and the i th row of C is the sum of the i th rows of A and B.

Then $\operatorname{det} A=\operatorname{det} B+\operatorname{det} C$.

$$
\left|\begin{array}{ccc}
a_{1}+a_{1}^{\prime} & a_{2}+a_{2}^{\prime} & a_{3}+a_{3}^{\prime} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|+\left|\begin{array}{lll}
a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

- Interchanging two rows of a matrix changes the sign of its determinant.

$$
\left|\begin{array}{lll}
c_{1} & c_{2} & c_{3} \\
b_{1} & b_{2} & b_{3} \\
a_{1} & a_{2} & a_{3}
\end{array}\right|=-\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

- Suppose that a matrix B is obtained from a matrix A by permuting its rows.

Then $\operatorname{det} B=\operatorname{det} A$ if the permutation is even and $\operatorname{det} B=-\operatorname{det} A$ if the permutation is odd.

$$
\left|\begin{array}{lll}
c_{1} & c_{2} & c_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

- If a matrix A has two identical rows then $\operatorname{det} A=0$.

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
a_{1} & a_{2} & a_{3}
\end{array}\right|=0
$$

- If a matrix A has two rows proportional then $\operatorname{det} A=0$.

$$
\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
r a_{1} & r a_{2} & r a_{3}
\end{array}\right|=r\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
a_{1} & a_{2} & a_{3}
\end{array}\right|=0
$$

- Adding a scalar multiple of one row to another does not change the determinant of a matrix.

$$
\begin{aligned}
& \quad\left|\begin{array}{cccc}
a_{1}+r b_{1} & a_{2}+r b_{2} & a_{3}+r b_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|= \\
& =\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|+\left|\begin{array}{ccc}
r b_{1} & r b_{2} & r b_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
\end{aligned}
$$

Definition. A square matrix is called upper triangular if all entries below the main diagonal are zeros.

- The determinant of an upper triangular matrix is equal to the product of its diagonal entries.

$$
\left|\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right|=a_{11} a_{22} a_{33}
$$

- If $A=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ then $\operatorname{det} A=d_{1} d_{2} \ldots d_{n}$. In particular, $\operatorname{det} I=1$.

Determinant of the transpose

- If A is a square matrix then $\operatorname{det} A^{T}=\operatorname{det} A$.

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Columns vs. rows

- If one column of a matrix is multiplied by a scalar, the determinant is multiplied by the same scalar.
- Interchanging two columns of a matrix changes the sign of its determinant.
- If a matrix A has two columns proportional then $\operatorname{det} A=0$.
- Adding a scalar multiple of one column to another does not change the determinant of a matrix.

Submatrices

Definition. Given a matrix A, a $k \times k$ submatrix of A is a matrix obtained by specifying k columns and k rows of A and deleting the other columns and rows.

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
10 & 20 & 30 & 40 \\
3 & 5 & 7 & 9
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
* & 2 & * & 4 \\
* & * & * & * \\
* & 5 & * & 9
\end{array}\right) \rightarrow\left(\begin{array}{cc}
2 & 4 \\
5 & 9
\end{array}\right)
$$

If A is an $n \times n$ matrix then $A_{i j}$ denote the $(n-1) \times(n-1)$ submatrix obtained by deleting the ith row and the j th column.
Example. $\quad A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right)$.

$$
\begin{aligned}
& A_{11}=\left(\begin{array}{ll}
0 & 1 \\
3 & 0
\end{array}\right), A_{12}=\left(\begin{array}{rr}
1 & 1 \\
-2 & 0
\end{array}\right), A_{13}=\left(\begin{array}{rr}
1 & 0 \\
-2 & 3
\end{array}\right), \\
& A_{21}=\left(\begin{array}{rr}
-2 & 0 \\
3 & 0
\end{array}\right), A_{22}=\left(\begin{array}{rr}
3 & 0 \\
-2 & 0
\end{array}\right), A_{23}=\left(\begin{array}{rr}
3 & -2 \\
-2 & 3
\end{array}\right), \\
& A_{31}=\left(\begin{array}{rr}
-2 & 0 \\
0 & 1
\end{array}\right), A_{32}=\left(\begin{array}{ll}
3 & 0 \\
1 & 1
\end{array}\right), A_{33}=\left(\begin{array}{rr}
3 & -2 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

Row and column expansions

Theorem Let A be an $n \times n$ matrix. Then for any $1 \leq k, m \leq n$ we have that

$$
\begin{gathered}
\operatorname{det} A=\sum_{j=1}^{n}(-1)^{k+j} a_{k j} \operatorname{det} A_{k j}, \\
\quad(\text { expansion by } k t h \text { row })
\end{gathered}
$$

$$
\operatorname{det} A=\sum_{i=1}^{n}(-1)^{i+m} a_{i m} \operatorname{det} A_{i m} .
$$

(expansion by mth column)

Signs for row/column expansions

$$
\left(\begin{array}{ccccc}
+ & - & + & - & \cdots \\
- & + & - & + & \cdots \\
+ & - & + & - & \cdots \\
- & + & - & + & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Example. $\quad A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right)$.
Expansion by the 1st row:
$\left|\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right|=3\left|\begin{array}{ll}0 & 1 \\ 3 & 0\end{array}\right|-(-2)\left|\begin{array}{rr}1 & 1 \\ -2 & 0\end{array}\right|=-5$.
Expansion by the 2nd row:

$$
\left|\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right|=-1\left|\begin{array}{rr}
-2 & 0 \\
3 & 0
\end{array}\right|-1\left|\begin{array}{rr}
3 & -2 \\
-2 & 3
\end{array}\right|=-5 .
$$

Example. $\quad A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right)$.
Expansion by the 2nd column:
$\left|\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right|=-(-2)\left|\begin{array}{rr}1 & 1 \\ -2 & 0\end{array}\right|-3\left|\begin{array}{ll}3 & 0 \\ 1 & 1\end{array}\right|=-5$.
Expansion by the 3rd column:

$$
\left|\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right|=-1\left|\begin{array}{rr}
3 & -2 \\
-2 & 3
\end{array}\right|=-5 .
$$

