## Math 304-504 <br> Linear Algebra <br> Lecture 9: <br> Evaluation of determinants.

Determinant is a scalar assigned to each square matrix.
Notation. The determinant of a matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ is denoted $\operatorname{det} A$ or

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right| .
$$

Principal property: $\operatorname{det} A=0$ if and only if the matrix $A$ is singular.

## Explicit definition in low dimensions

Definition. $\operatorname{det}(a)=a, \quad\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$,

$+:\left(\begin{array}{ccc}\boxed{*} & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.
$-:\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.

## Properties of determinants

Determinants and elementary row operations:

- if a row of a matrix is multiplied by a scalar $r$, the determinant is also multiplied by $r$;
- if we add a row of a matrix multiplied by a scalar to another row, the determinant remains the same;
- if we interchange two rows of a matrix, the determinant changes its sign.


## Properties of determinants

Tests for singularity:

- if a matrix $A$ has a zero row then $\operatorname{det} A=0$;
- if a matrix $A$ has two identical rows then $\operatorname{det} A=0$;
- if a matrix has two proportional rows then $\operatorname{det} A=0$.


## Properties of determinants

Special matrices:

- $\operatorname{det} I=1$;
- the determinant of a diagonal matrix is equal to the product of its diagonal entries;
- the determinant of an upper triangular matrix is equal to the product of its diagonal entries.


## Properties of determinants

Determinant of the transpose:

- If $A$ is a square matrix then $\operatorname{det} A^{T}=\operatorname{det} A$.

Columns vs. rows:

- if one column of a matrix is multiplied by a scalar, the determinant is multiplied by the same scalar;
- adding a scalar multiple of one column to another does not change the determinant;
- interchanging two columns of a matrix changes the sign of its determinant;
- if a matrix $A$ has a zero row or two proportional columns then $\operatorname{det} A=0$.


## Row and column expansions

Given an $n \times n$ matrix $A=\left(a_{i j}\right)$, let $M_{i j}$ denote the $(n-1) \times(n-1)$ submatrix obtained by deleting the $i$ th row and the $j$ th column of $A$.

Theorem For any $1 \leq k, m \leq n$ we have that

$$
\begin{gathered}
\operatorname{det} A=\sum_{j=1}^{n}(-1)^{k+j} a_{k j} \operatorname{det} M_{k j}, \\
\quad \text { (expansion by } k t h \text { row) }
\end{gathered}
$$

$$
\operatorname{det} A=\sum_{i=1}^{n}(-1)^{i+m} a_{i m} \operatorname{det} M_{i m}
$$

(expansion by mth column)

## Signs for row/column expansions

$$
\left(\begin{array}{ccccc}
+ & - & + & - & \cdots \\
- & + & - & + & \cdots \\
+ & - & + & - & \cdots \\
- & + & - & + & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Example. $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$.
Expansion by the 1st row:

$$
\left(\begin{array}{ccc}
\boxed{1} & * & * \\
* & 5 & 6 \\
* & 8 & 9
\end{array}\right)\left(\begin{array}{ccc}
* & \boxed{2} & * \\
4 & * & 6 \\
7 & * & 9
\end{array}\right)\left(\begin{array}{ccc}
* & * & \boxed{3} \\
4 & 5 & * \\
7 & 8 & *
\end{array}\right)
$$

$\operatorname{det} A=1\left|\begin{array}{ll}5 & 6 \\ 8 & 9\end{array}\right|-2\left|\begin{array}{ll}4 & 6 \\ 7 & 9\end{array}\right|+3\left|\begin{array}{ll}4 & 5 \\ 7 & 8\end{array}\right|$
$=(5 \cdot 9-6 \cdot 8)-2(4 \cdot 9-6 \cdot 7)+3(4 \cdot 8-5 \cdot 7)=0$.

Example. $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$.
Expansion by the 2nd column:
$\left(\begin{array}{lll}* & 2 & * \\ 4 & * & 6 \\ 7 & * & 9\end{array}\right)\left(\begin{array}{ccc}1 & * & 3 \\ * & 5 & * \\ 7 & * & 9\end{array}\right)\left(\begin{array}{ccc}1 & * & 3 \\ 4 & * & 6 \\ * & 8 & *\end{array}\right)$
$\operatorname{det} A=-2\left|\begin{array}{ll}4 & 6 \\ 7 & 9\end{array}\right|+5\left|\begin{array}{ll}1 & 3 \\ 7 & 9\end{array}\right|-8\left|\begin{array}{ll}1 & 3 \\ 4 & 6\end{array}\right|$
$=-2(4 \cdot 9-6 \cdot 7)+5(1 \cdot 9-3 \cdot 7)-8(1 \cdot 6-3 \cdot 4)=0$.

Example. $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$.
Subtract the 1st row from the 2nd row and from the 3 rd row:

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|=\left|\begin{array}{lll}
1 & 2 & 3 \\
3 & 3 & 3 \\
7 & 8 & 9
\end{array}\right|=\left|\begin{array}{lll}
1 & 2 & 3 \\
3 & 3 & 3 \\
6 & 6 & 6
\end{array}\right|=0
$$

since the last matrix has two proportional rows.

Another example. $B=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 13\end{array}\right)$.
Let's do some row reduction.
Add -4 times the 1st row to the 2 nd row:

$$
\left|\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 13
\end{array}\right|=\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
7 & 8 & 13
\end{array}\right|
$$

Add -7 times the 1 st row to the 3 rd row:

$$
\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
7 & 8 & 13
\end{array}\right|=\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -8
\end{array}\right|
$$

$$
\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
7 & 8 & 13
\end{array}\right|=\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -8
\end{array}\right|
$$

Expand the determinant by the 1st column:

$$
\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -8
\end{array}\right|=1\left|\begin{array}{ll}
-3 & -6 \\
-6 & -8
\end{array}\right|
$$

Thus

$$
\begin{gathered}
\operatorname{det} B=\left|\begin{array}{ll}
-3 & -6 \\
-6 & -8
\end{array}\right|=(-3)\left|\begin{array}{rr}
1 & 2 \\
-6 & -8
\end{array}\right| \\
=(-3)(-2)\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|=(-3)(-2)(-2)=-12
\end{gathered}
$$

Example. $C=\left(\begin{array}{rrrr}2 & -2 & 0 & 3 \\ -5 & 3 & 2 & 1 \\ 1 & -1 & 0 & -3 \\ 2 & 0 & 0 & -1\end{array}\right), \operatorname{det} C=$ ?
Expand the determinant by the 3rd column:

$$
\left|\begin{array}{rrrr}
2 & -2 & 0 & 3 \\
-5 & 3 & 2 & 1 \\
1 & -1 & 0 & -3 \\
2 & 0 & 0 & -1
\end{array}\right|=-2\left|\begin{array}{rrr}
2 & -2 & 3 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|
$$

Add -2 times the 2 nd row to the 1 st row:

$$
\operatorname{det} C=-2\left|\begin{array}{rrr}
2 & -2 & 3 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|=-2\left|\begin{array}{rrr}
0 & 0 & 9 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|
$$

$$
\operatorname{det} C=-2\left|\begin{array}{rrr}
2 & -2 & 3 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|=-2\left|\begin{array}{rrr}
0 & 0 & 9 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|
$$

Expand the determinant by the 1st row:

$$
\operatorname{det} C=-2\left|\begin{array}{rrr}
0 & 0 & 9 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|=-2 \cdot 9\left|\begin{array}{rr}
1 & -1 \\
2 & 0
\end{array}\right|
$$

Thus

$$
\operatorname{det} C=-18\left|\begin{array}{rr}
1 & -1 \\
2 & 0
\end{array}\right|=-18 \cdot 2=-36
$$

Problem. For what values of a will the following system have a unique solution:
$\left\{\begin{array}{l}x+2 y+z=1 \\ -x+4 y+2 z=2 \\ 2 x-2 y+a z=3\end{array}\right.$
The system has a unique solution if and only if the coefficient matrix is invertible.
$A=\left(\begin{array}{rrr}1 & 2 & 1 \\ -1 & 4 & 2 \\ 2 & -2 & a\end{array}\right), \quad \operatorname{det} A=$ ?
$A=\left(\begin{array}{rrr}1 & 2 & 1 \\ -1 & 4 & 2 \\ 2 & -2 & a\end{array}\right), \quad \operatorname{det} A=?$
Add -2 times the 3 rd column to the 2 nd column:

$$
\left|\begin{array}{rrr}
1 & 2 & 1 \\
-1 & 4 & 2 \\
2 & -2 & a
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 0 & 2 \\
2 & -2-2 a & a
\end{array}\right|
$$

Expand the determinant by the 2 nd column:
$\operatorname{det} A=\left|\begin{array}{rcc}1 & 0 & 1 \\ -1 & 0 & 2 \\ 2 & -2-2 a & a\end{array}\right|=-(-2-2 a)\left|\begin{array}{rr}1 & 1 \\ -1 & 2\end{array}\right|$
Hence $\operatorname{det} A=-(-2-2 a) \cdot 3=6(1+a)$.
Thus $A$ is invertible if and only if $a \neq-1$.

## Determinants and matrix multiplication

Theorem Suppose $A$ and $B$ are $n \times n$ matrices. Then $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$.

Corollary $1 \operatorname{det}(A B)=\operatorname{det}(B A)$.
Proof: $\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B=\operatorname{det} B \operatorname{det} A=\operatorname{det}(B A)$.
Corollary $2 \operatorname{det}\left(A^{-1}\right)=(\operatorname{det} A)^{-1}$.
Proof: $\operatorname{det}\left(A^{-1}\right) \cdot \operatorname{det} A=\operatorname{det}\left(A^{-1} A\right)=\operatorname{det} I=1$.
Corollary 3 If both $A$ and $A^{-1}$ have integer entries then $\operatorname{det} A= \pm 1$.

Proof: If $A$ and $A^{-1}$ have integer entries then $\operatorname{det} A$ and $\operatorname{det}\left(A^{-1}\right)$ are integers. But $\operatorname{det}\left(A^{-1}\right) \operatorname{det} A=1$.

We know that $\left|\begin{array}{rrr}1 & 2 & 1 \\ -1 & 4 & 2 \\ 2 & -2 & a\end{array}\right|=6(1+a)$.
Let $X=\left(\begin{array}{rrr}1 & 2 & 1 \\ -1 & 4 & 2 \\ 2 & -2 & 0\end{array}\right), \quad Y=\left(\begin{array}{rrc}1 & 2 & 1 \\ -1 & 4 & 2 \\ 2 & -2 & -0.5\end{array}\right)$.
$\operatorname{det} X=6, \quad \operatorname{det} Y=3, \quad \operatorname{det}(X Y)=6 \cdot 3=18$, $\operatorname{det}\left(Y^{-1}\right)=1 / 3, \quad \operatorname{det}\left(X Y^{-1}\right)=6 / 3=2$, $\operatorname{det}\left(X Y X^{-1}\right)=\operatorname{det} Y=3, \quad \operatorname{det}\left(X^{-1} Y^{-1} X Y\right)=1$, $\operatorname{det}(2 X)=2^{3} \operatorname{det} X=2^{3} \cdot 6=48$, $\operatorname{det}\left(-3 X^{-1} Y\right)=(-3)^{3} \cdot 6^{-1} \cdot 3=-27 / 2$, $\operatorname{det}\left(X^{T}\right)=\operatorname{det} X=6, \quad \operatorname{det}\left(Y^{T} Y\right)=(\operatorname{det} Y)^{2}=9$.

