Sample problems for Test 1: Solutions

Any problem may be altered or replaced by a different one!

Problem $1(20 \mathrm{pts}$.$) \quad Find the point of intersection of the planes x+2 y-z=1$, $x-3 y=-5$, and $2 x+y+z=0$ in \mathbb{R}^{3}.

The intersection point (x, y, z) is a solution of the system

$$
\left\{\begin{array}{l}
x+2 y-z=1 \\
x-3 y=-5 \\
2 x+y+z=0
\end{array}\right.
$$

To solve the system, we convert its augmented matrix into reduced row echelon form using elementary row operations:

$$
\begin{aligned}
\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
1 & -3 & 0 & -5 \\
2 & 1 & 1 & 0
\end{array}\right) & \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & -5 & 1 & -6 \\
2 & 1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & -5 & 1 & -6 \\
0 & -3 & 3 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & -3 & 3 & -2 \\
0 & -5 & 1 & -6
\end{array}\right) \\
& \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 1 & -1 & \frac{2}{3} \\
0 & -5 & 1 & -6
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 1 & -1 & \frac{2}{3} \\
0 & 0 & -4 & -\frac{8}{3}
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 1 & -1 & \frac{2}{3} \\
0 & 0 & 1 & \frac{2}{3}
\end{array}\right) \\
& \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 1 & 0 & \frac{4}{3} \\
0 & 0 & 1 & \frac{2}{3}
\end{array}\right) \rightarrow\left(\begin{array}{lll|l}
1 & 2 & 0 & \frac{5}{3} \\
0 & 1 & 0 & \frac{4}{3} \\
0 & 0 & 1 & \frac{2}{3}
\end{array}\right) \rightarrow\left(\begin{array}{lll|r}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & \frac{4}{3} \\
0 & 0 & 1 & \frac{2}{3}
\end{array}\right) .
\end{aligned}
$$

Thus the three planes intersect at the point $\left(-1, \frac{4}{3}, \frac{2}{3}\right)$.
Alternative solution: The intersection point (x, y, z) is a solution of the system

$$
\left\{\begin{array}{l}
x+2 y-z=1 \\
x-3 y=-5 \\
2 x+y+z=0
\end{array}\right.
$$

Adding all three equations, we obtain $4 x=-4$. Hence $x=-1$. Substituting $x=-1$ into the second equation, we obtain $y=\frac{4}{3}$. Substituting $x=-1$ and $y=\frac{4}{3}$ into the third equation, we obtain $z=\frac{2}{3}$. It is easy to check that $x=-1, y=\frac{4}{3}, z=\frac{2}{3}$ is indeed a solution of the system. Thus $\left(-1, \frac{4}{3}, \frac{2}{3}\right)$ is the unique intersection point.

Problem 2 (30 pts.) Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.

First let us subtract 2 times the fourth column of A from the first column:

$$
\left|\begin{array}{rrrr}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
2 & 0 & -1 & 1 \\
2 & 0 & 0 & 1
\end{array}\right|=\left|\begin{array}{rrrr}
-1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right|
$$

Now the determinant can be easily expanded by the fourth row:

$$
\left|\begin{array}{rrrr}
-1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right|=\left|\begin{array}{rrr}
-1 & -2 & 4 \\
2 & 3 & 2 \\
0 & 0 & -1
\end{array}\right|
$$

The 3×3 determinant is easily expanded by the third row:

$$
\left|\begin{array}{rrr}
-1 & -2 & 4 \\
2 & 3 & 2 \\
0 & 0 & -1
\end{array}\right|=(-1)\left|\begin{array}{rr}
-1 & -2 \\
2 & 3
\end{array}\right|
$$

Thus

$$
\operatorname{det} A=-\left|\begin{array}{rr}
-1 & -2 \\
2 & 3
\end{array}\right|=-1
$$

Another way to evaluate $\operatorname{det} A$ is to reduce the matrix A to the identity matrix using elementary row operations (see below). This requires much more work but we are going to do it anyway, to find the inverse of A.
(ii) Find the inverse matrix A^{-1}.

First we merge the matrix A with the identity matrix into one 4×8 matrix

$$
(A \mid I)=\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
2 & 3 & 2 & 0 & 0 & 1 & 0 & 0 \\
2 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Then we apply elementary row operations to this matrix until the left part becomes the identity matrix.

Subtract 2 times the first row from the second row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
2 & 3 & 2 & 0 & 0 & 1 & 0 & 0 \\
2 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\
2 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Subtract 2 times the first row from the third row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\
2 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\
0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Subtract 2 times the first row from the fourth row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\
0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\
0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\
0 & 4 & -8 & -1 & -2 & 0 & 0 & 1
\end{array}\right)
$$

Subtract 2 times the fourth row from the second row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\
0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\
0 & 4 & -8 & -1 & -2 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\
0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\
0 & 4 & -8 & -1 & -2 & 0 & 0 & 1
\end{array}\right) .
$$

Subtract the fourth row from the third row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\
0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\
0 & 4 & -8 & -1 & -2 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 4 & -8 & -1 & -2 & 0 & 0 & 1
\end{array}\right)
$$

Add 4 times the second row to the fourth row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 4 & -8 & -1 & -2 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 32 & -1 & 6 & 4 & 0 & -7
\end{array}\right)
$$

Add 32 times the third row to the fourth row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 32 & -1 & 6 & 4 & 0 & -7
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right)
$$

Add 10 times the third row to the second row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right) .
$$

Add the fourth row to the first row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 0 & 7 & 4 & 32 & -39 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right) .
$$

Add 4 times the third row to the first row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 0 & 7 & 4 & 32 & -39 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & -2 & 0 & 0 & 7 & 4 & 36 & -43 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right) .
$$

Subtract 2 times the second row from the first row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 0 & 0 & 7 & 4 & 36 & -43 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right) .
$$

Multiply the second, the third, and the fourth rows by -1 :

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -6 & -4 & -32 & 39
\end{array}\right) .
$$

Finally the left part of our 4×8 matrix is transformed into the identity matrix. Therefore the current right part is the inverse matrix of A. Thus

$$
A^{-1}=\left(\begin{array}{rrrr}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
2 & 0 & -1 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{rrrr}
3 & 2 & 16 & -19 \\
-2 & -1 & -10 & 12 \\
0 & 0 & -1 & 1 \\
-6 & -4 & -32 & 39
\end{array}\right)
$$

As a byproduct, we can evaluate the determinant of A. We have transformed A into the identity matrix using elementary row operations. These included no row exchanges and three row multiplications, each time by -1 . It follows that $\operatorname{det} I=(-1)^{3} \operatorname{det} A$. Hence $\operatorname{det} A=-\operatorname{det} I=-1$.

Problem 3 (20 pts.) Let \mathcal{P}_{4} be the vector space of all polynomials (with real coefficients) of degree less than 4 . Determine which of the following subsets of \mathcal{P}_{4} are vector subspaces. Briefly explain.
(i) The set S_{1} of polynomials $p(x) \in \mathcal{P}_{4}$ such that $p(0)=0$.

The set S_{1} is not empty because it contains the zero polynomial. S_{1} is a subspace of \mathcal{P}_{4} since it is closed under addition and scalar multiplication. Alternatively, S_{1} is the kernel of a linear functional $\ell: \mathcal{P}_{4} \rightarrow \mathbb{R}$ given by $\ell(p)=p(0)$.
(ii) The set S_{2} of polynomials $p(x) \in \mathcal{P}_{4}$ such that $p(0) p(1)=0$.

A polynomial $p(x) \in \mathcal{P}_{4}$ belongs to S_{2} if $p(0)=0$ or $p(1)=0$. The set S_{2} is not a subspace because it is not closed under addition. For example, the polynomials $p_{1}(x)=x$ and $p_{2}(x)=x-1$ belong to S_{2} while their sum $p(x)=2 x-1$ is not in S_{2}.
(iii) The set S_{3} of polynomials $p(x) \in \mathcal{P}_{4}$ such that $(p(0))^{2}+(p(1))^{2}=0$.

A polynomial $p(x) \in \mathcal{P}_{4}$ belongs to S_{3} if $p(0)=p(1)=0$. The set S_{3} is not empty because it contains the zero polynomial. S_{3} is a subspace of \mathcal{P}_{4} since it is closed under addition and scalar multiplication. Alternatively, S_{3} is the kernel of a linear mapping $L: \mathcal{P}_{4} \rightarrow \mathbb{R}^{2}$ given by $L(p)=$ $(p(0), p(1))$.
(iv) The set S_{4} of polynomials $p(x) \in \mathcal{P}_{4}$ such that $p(0)=0$ and $p(1)=1$.

The set S_{4} is not a subspace of \mathcal{P}_{4} because it does not contain the zero polynomial (consequently, S_{4} is not closed under scalar multiplication).

Problem 4 ($\mathbf{3 0}$ pts.) Let $B=\left(\begin{array}{rrrr}0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$.
(i) Find the rank and the nullity of the matrix B.

The rank (dimension of the row space) and the nullity (dimension of the nullspace) of a matrix are preserved under elementary row operations. We apply such operations to convert the matrix B into row echelon form.

First interchange the first row with the second row:

$$
\left(\begin{array}{rrrr}
0 & -1 & 4 & 1 \\
1 & 1 & 2 & -1 \\
-3 & 0 & -1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & -1 & 4 & 1 \\
-3 & 0 & -1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right)
$$

Add 3 times the first row to the third row, then subtract 2 times the first row from the fourth row:

$$
\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & -1 & 4 & 1 \\
-3 & 0 & -1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & -1 & 4 & 1 \\
0 & 3 & 5 & -3 \\
2 & -1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & -1 & 4 & 1 \\
0 & 3 & 5 & -3 \\
0 & -3 & -4 & 3
\end{array}\right)
$$

Multiply the second row by -1 :

$$
\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & -1 & 4 & 1 \\
0 & 3 & 5 & -3 \\
0 & -3 & -4 & 3
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 3 & 5 & -3 \\
0 & -3 & -4 & 3
\end{array}\right)
$$

Add the fourth row to the third row:

$$
\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 3 & 5 & -3 \\
0 & -3 & -4 & 3
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & -3 & -4 & 3
\end{array}\right)
$$

Add 3 times the second row to the fourth row:

$$
\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & -3 & -4 & 3
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & -16 & 0
\end{array}\right)
$$

Add 16 times the third row to the fourth row:

$$
\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & -16 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Now that the matrix is in row echelon form, its rank equals the number of nonzero rows, which is 3. Since

$$
(\text { rank of } B)+(\text { nullity of } B)=(\text { the number of columns of } B)=4
$$

it follows that the nullity of B equals 1 .
(ii) Find a basis for the row space of B, then extend this basis to a basis for \mathbb{R}^{4}.

The row space of a matrix is invariant under elementary row operations. Therefore the row space of the matrix B is the same as the row space of its row echelon form

$$
\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The nonzero rows of the latter are linearly independent so that they form a basis for its row space. Hence the vectors $\mathbf{v}_{1}=(1,1,2,-1), \mathbf{v}_{2}=(0,1,-4,-1)$, and $\mathbf{v}_{3}=(0,0,1,0)$ form a basis for the row space of B.

To extend the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to a basis for \mathbb{R}^{4}, we need a vector $\mathbf{v}_{4} \in \mathbb{R}^{4}$ that is not a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. It is known that at least one of the vectors $\mathbf{e}_{1}=(1,0,0,0), \mathbf{e}_{2}=(0,1,0,0)$, $\mathbf{e}_{3}=(0,0,1,0)$, and $\mathbf{e}_{4}=(0,0,0,1)$ can be chosen as \mathbf{v}_{4}. In particular, the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{e}_{4}$ form a basis for \mathbb{R}^{4}. This follows from the fact that the 4×4 matrix whose rows are these vectors is not singular:

$$
\left|\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|=1 \neq 0
$$

Bonus Problem 5 (25 pts.) Show that the functions $f_{1}(x)=x, f_{2}(x)=x e^{x}$, and $f_{3}(x)=e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Suppose that $a f_{1}(x)+b f_{2}(x)+c f_{3}(x)=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.

Differentiating the identity $a f_{1}(x)+b f_{2}(x)+c f_{3}(x)=0$ four times, we obtain four more identities:

$$
\begin{gathered}
a x+b x e^{x}+c e^{-x}=0, \\
a+b e^{x}+b x e^{x}-c e^{-x}=0, \\
2 b e^{x}+b x e^{x}+c e^{-x}=0, \\
3 b e^{x}+b x e^{x}-c e^{-x}=0, \\
4 b e^{x}+b x e^{x}+c e^{-x}=0 .
\end{gathered}
$$

Subtracting the third identity from the fifth one, we obtain $2 b e^{x}=0$, which implies that $b=0$. Substituting $b=0$ in the third identity, we obtain $c e^{-x}=0$, which implies that $c=0$. Substituting $b=0$ and $c=0$ in the second identity, we obtain $a=0$.

Alternative solution: Suppose that $a x+b x e^{x}+c e^{-x}=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.

For any $x \neq 0$ divide both sides of the identity by $x e^{x}$:

$$
a e^{-x}+b+c x^{-1} e^{-2 x}=0 .
$$

Note that $e^{-x} \rightarrow 0$ and $x^{-1} e^{-2 x} \rightarrow 0$ as $x \rightarrow+\infty$. Hence the left-hand side approaches b as $x \rightarrow+\infty$. It follows that $b=0$. Now $a x+c e^{-x}=0$ for all $x \in \mathbb{R}$. For any $x \neq 0$ divide both sides of the latter identity by x :

$$
a+c x^{-1} e^{-x}=0 .
$$

Since $x^{-1} e^{-x} \rightarrow 0$ as $x \rightarrow+\infty$, the left-hand side approaches a as $x \rightarrow+\infty$. It follows that $a=0$. Then $c e^{-x}=0$, which implies that $c=0$.

Bonus Problem 6 (20 pts.) Let V and W be subspaces of the vector space \mathbb{R}^{n} such that $V \cup W$ is also a subspace of \mathbb{R}^{n}. Show that $V \subset W$ or $W \subset V$.

Assume the contrary: neither of the subspaces V and W is contained in the other. Then there exist vectors $\mathbf{v} \in V$ and $\mathbf{w} \in W$ such that $\mathbf{v} \notin W$ and $\mathbf{w} \notin V$. Let $\mathbf{x}=\mathbf{v}+\mathbf{w}$. Since $\mathbf{v}, \mathbf{w} \in V \cup W$ and $V \cup W$ is a subspace, it follows that $\mathbf{x} \in V \cup W$. That is, $\mathbf{x} \in V$ or $\mathbf{x} \in W$. However in the case $\mathbf{x} \in V$ we have $\mathbf{w}=\mathbf{x}-\mathbf{v} \in V$, while in the case $\mathbf{x} \in W$ we have $\mathbf{v}=\mathbf{x}-\mathbf{w} \in W$. In either case we arrive at a contradiction. Thus the initial assumption was wrong. That is, one of the subspaces V and W does contain the other.

