Sample problems for Test 2

Any problem may be altered or replaced by a different one!

Problem $1(20 \mathrm{pts}$.$) Let \mathcal{M}_{2,2}(\mathbb{R})$ denote the vector space of 2×2 matrices with real entries. Consider a linear operator $L: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$
L\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) .
$$

Find the matrix of the operator L with respect to the basis

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad E_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad E_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Problem 2 (30 pts.) Let V be a subspace of \mathbb{R}^{4} spanned by the vectors $\mathbf{x}_{1}=(1,1,1,1)$ and $\mathbf{x}_{2}=(1,0,3,0)$.
(i) Find an orthonormal basis for V.
(ii) Find an orthonormal basis for the orthogonal complement V^{\perp}.

Problem 3 (30 pts.) Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix A.
(ii) For each eigenvalue of A, find an associated eigenvector.
(iii) Is the matrix A diagonalizable? Explain.
(iv) Find all eigenvalues of the matrix A^{2}.

Bonus Problem 4 (20 pts.) Find a linear polynomial which is the best least squares fit to the following data:

$$
\begin{array}{c||l|l|l|l|l}
x & -2 & -1 & 0 & 1 & 2 \\
\hline f(x) & -3 & -2 & 1 & 2 & 5
\end{array}
$$

Bonus Problem 5 (20 pts.) Let $L: V \rightarrow W$ be a linear mapping of a finite-dimensional vector space V to a vector space W. Show that

$$
\operatorname{dim} \operatorname{Range}(L)+\operatorname{dim} \operatorname{ker}(L)=\operatorname{dim} V
$$

