Sample problems for Test 2: Solutions

Any problem may be altered or replaced by a different one!

Problem $1(20 \mathrm{pts}$.$) Let \mathcal{M}_{2,2}(\mathbb{R})$ denote the vector space of 2×2 matrices with real entries. Consider a linear operator $L: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$
L\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}\right) .
$$

Find the matrix of the operator L with respect to the basis

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad E_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad E_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Let M_{L} denote the desired matrix. By definition, M_{L} is a 4×4 matrix whose columns are coordinates of the matrices $L\left(E_{1}\right), L\left(E_{2}\right), L\left(E_{3}\right), L\left(E_{4}\right)$ with respect to the basis $E_{1}, E_{2}, E_{3}, E_{4}$. We have that

$$
\begin{aligned}
& L\left(E_{1}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right)=1 E_{1}+2 E_{2}+0 E_{3}+0 E_{4}, \\
& L\left(E_{2}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
3 & 4 \\
0 & 0
\end{array}\right)=3 E_{1}+4 E_{2}+0 E_{3}+0 E_{4}, \\
& L\left(E_{3}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right)=0 E_{1}+0 E_{2}+1 E_{3}+2 E_{4}, \\
& L\left(E_{4}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
3 & 4
\end{array}\right)=0 E_{1}+0 E_{2}+3 E_{3}+4 E_{4} .
\end{aligned}
$$

It follows that

$$
M_{L}=\left(\begin{array}{llll}
1 & 3 & 0 & 0 \\
2 & 4 & 0 & 0 \\
0 & 0 & 1 & 3 \\
0 & 0 & 2 & 4
\end{array}\right) .
$$

Problem $2(30 \mathrm{pts}$.$) \quad Let V$ be a subspace of \mathbb{R}^{4} spanned by the vectors $\mathbf{x}_{1}=(1,1,1,1)$ and $\mathbf{x}_{2}=(1,0,3,0)$.
(i) Find an orthonormal basis for V.

First we apply the Gram-Schmidt orthogonalization process to vectors $\mathbf{x}_{1}, \mathbf{x}_{2}$ and obtain an orthogonal basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ for the subspace V :

$$
\mathbf{v}_{1}=\mathbf{x}_{1}=(1,1,1,1), \quad \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=(1,0,3,0)-\frac{4}{4}(1,1,1,1)=(0,-1,2,-1) .
$$

Then we normalize vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ to obtain an orthonormal basis $\mathbf{w}_{1}, \mathbf{w}_{2}$ for V :

$$
\mathbf{w}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}=\frac{1}{2} \mathbf{v}_{1}=\frac{1}{2}(1,1,1,1), \quad \mathbf{w}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}=\frac{1}{\sqrt{6}} \mathbf{v}_{2}=\frac{1}{\sqrt{6}}(0,-1,2,-1) .
$$

(ii) Find an orthonormal basis for the orthogonal complement V^{\perp}.

Since the subspace V is spanned by vectors $(1,1,1,1)$ and $(1,0,3,0)$, it is the row space of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 3 & 0
\end{array}\right)
$$

Then the orthogonal complement V^{\perp} is the nullspace of A. To find the nullspace, we convert the matrix A to reduced row echelon form:

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 3 & 0
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 0 & 3 & 0 \\
1 & 1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 0 & 3 & 0 \\
0 & 1 & -2 & 1
\end{array}\right)
$$

Hence a vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ belongs to V^{\perp} if and only if

$$
\left\{\begin{array} { l }
{ x _ { 1 } + 3 x _ { 3 } = 0 } \\
{ x _ { 2 } - 2 x _ { 3 } + x _ { 4 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{1}=-3 x_{3} \\
x_{2}=2 x_{3}-x_{4}
\end{array}\right.\right.
$$

The general solution of the system is $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(-3 t, 2 t-s, t, s)=t(-3,2,1,0)+s(0,-1,0,1)$, where $t, s \in \mathbb{R}$. It follows that V^{\perp} is spanned by vectors $\mathbf{x}_{3}=(0,-1,0,1)$ and $\mathbf{x}_{4}=(-3,2,1,0)$. It remains to orthogonalize and normalize this basis for V^{\perp} :

$$
\begin{gathered}
\mathbf{v}_{3}=\mathbf{x}_{3}=(0,-1,0,1), \quad \mathbf{v}_{4}=\mathbf{x}_{4}-\frac{\mathbf{x}_{4} \cdot \mathbf{v}_{3}}{\mathbf{v}_{3} \cdot \mathbf{v}_{3}} \mathbf{v}_{3}=(-3,2,1,0)-\frac{-2}{2}(0,-1,0,1)=(-3,1,1,1), \\
\mathbf{w}_{3}=\frac{\mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|}=\frac{1}{\sqrt{2}}(0,-1,0,1), \quad \mathbf{w}_{4}=\frac{\mathbf{v}_{4}}{\left\|\mathbf{v}_{4}\right\|}=\frac{1}{2 \sqrt{3}} \mathbf{v}_{4}=\frac{1}{2 \sqrt{3}}(-3,1,1,1) .
\end{gathered}
$$

Thus the vectors $\mathbf{w}_{3}=\frac{1}{\sqrt{2}}(0,-1,0,1)$ and $\mathbf{w}_{4}=\frac{1}{2 \sqrt{3}}(-3,1,1,1)$ form an orthonormal basis for V^{\perp}.
Alternative solution: Suppose that an orthonormal basis $\mathbf{w}_{1}, \mathbf{w}_{2}$ for the subspace V has been extended to an orthonormal basis $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}$ for \mathbb{R}^{4}. Then the vectors $\mathbf{w}_{3}, \mathbf{w}_{4}$ form an orthonormal basis for the orthogonal complement V^{\perp}.

We know that vectors $\mathbf{v}_{1}=(1,1,1,1)$ and $\mathbf{v}_{2}=(0,-1,2,-1)$ form an orthogonal basis for V. This basis can be extended to a basis for \mathbb{R}^{4} by adding two vectors from the standard basis. For example, we can add vectors $\mathbf{e}_{3}=(0,0,1,0)$ and $\mathbf{e}_{4}=(0,0,0,1)$. The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}$ do form a basis for \mathbb{R}^{4} since the matrix whose rows are these vectors is nonsingular:

$$
\left|\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
0 & -1 & 2 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|=-1 \neq 0
$$

To orthogonalize the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}$, we apply the Gram-Schmidt process (note that the vectors \mathbf{v}_{1} and \mathbf{v}_{2} are already orthogonal):

$$
\begin{aligned}
\mathbf{v}_{3} & =\mathbf{e}_{3}-\frac{\mathbf{e}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{e}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}=(0,0,1,0)-\frac{1}{4}(1,1,1,1)-\frac{2}{6}(0,-1,2,-1)=\frac{1}{12}(-3,1,1,1), \\
\mathbf{v}_{4} & =\mathbf{e}_{4}-\frac{\mathbf{e}_{4} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{e}_{4} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}-\frac{\mathbf{e}_{4} \cdot \mathbf{v}_{3}}{\mathbf{v}_{3} \cdot \mathbf{v}_{3}} \mathbf{v}_{3}= \\
& =(0,0,0,1)-\frac{1}{4}(1,1,1,1)-\frac{-1}{6}(0,-1,2,-1)-\frac{1 / 12}{1 / 12} \cdot \frac{1}{12}(-3,1,1,1)=\frac{1}{2}(0,-1,0,1)
\end{aligned}
$$

It remains to normalize vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$:

$$
\mathbf{w}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}=\frac{1}{2}(1,1,1,1), \quad \mathbf{w}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}=\frac{1}{\sqrt{6}}(0,-1,2,-1)
$$

$$
\mathbf{w}_{3}=\frac{\mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|}=\sqrt{12} \mathbf{v}_{3}=\frac{1}{2 \sqrt{3}}(-3,1,1,1), \quad \mathbf{w}_{4}=\frac{\mathbf{v}_{4}}{\left\|\mathbf{v}_{4}\right\|}=\sqrt{2} \mathbf{v}_{4}=\frac{1}{\sqrt{2}}(0,-1,0,1)
$$

We have obtained an orthonormal basis $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}$ for \mathbb{R}^{4} that extends an orthonormal basis $\mathbf{w}_{1}, \mathbf{w}_{2}$ for the subspace V. It follows that $\mathbf{w}_{3}=\frac{1}{2 \sqrt{3}}(-3,1,1,1), \mathbf{w}_{4}=\frac{1}{\sqrt{2}}(0,-1,0,1)$ is an orthonormal basis for V^{\perp}.

Problem 3 (30 pts.) Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation $\operatorname{det}(A-\lambda I)=0$. We obtain that

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 2 & 0 \\
1 & 1-\lambda & 1 \\
0 & 2 & 1-\lambda
\end{array}\right|=(1-\lambda)^{3}-2(1-\lambda)-2(1-\lambda) \\
=(1-\lambda)\left((1-\lambda)^{2}-4\right)=(1-\lambda)((1-\lambda)-2)((1-\lambda)+2)=-(\lambda-1)(\lambda+1)(\lambda-3) .
\end{gathered}
$$

Hence the matrix A has three eigenvalues: $-1,1$, and 3 .
(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector $\mathbf{v}=(x, y, z)$ of A associated with an eigenvalue λ is a nonzero solution of the vector equation $(A-\lambda I) \mathbf{v}=\mathbf{0}$. To solve the equation, we apply row reduction to the matrix $A-\lambda I$.

First consider the case $\lambda=-1$. The row reduction yields

$$
A+I=\left(\begin{array}{lll}
2 & 2 & 0 \\
1 & 2 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Hence

$$
(A+I) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longleftrightarrow\left\{\begin{array}{l}
x-z=0 \\
y+z=0
\end{array}\right.
$$

The general solution is $x=t, y=-t, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{1}=(1,-1,1)$ is an eigenvector of A associated with the eigenvalue -1 .

Secondly, consider the case $\lambda=1$. The row reduction yields

$$
A-I=\left(\begin{array}{lll}
0 & 2 & 0 \\
1 & 0 & 1 \\
0 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Hence

$$
(A-I) \mathbf{v}=\mathbf{0} \quad \Longleftrightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longleftrightarrow\left\{\begin{array}{l}
x+z=0 \\
y=0
\end{array}\right.
$$

The general solution is $x=-t, y=0, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{2}=(-1,0,1)$ is an eigenvector of A associated with the eigenvalue 1.

Finally, consider the case $\lambda=3$. The row reduction yields

$$
\begin{gathered}
A-3 I=\left(\begin{array}{rrr}
-2 & 2 & 0 \\
1 & -2 & 1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
1 & -2 & 1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & -1 & 1 \\
0 & 2 & -2
\end{array}\right) \\
\rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Hence

$$
(A-3 I) \mathbf{v}=\mathbf{0} \quad \Longleftrightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
x-z=0 \\
y-z=0
\end{array}\right.
$$

The general solution is $x=t, y=t, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{3}=(1,1,1)$ is an eigenvector of A associated with the eigenvalue 3 .
(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for \mathbb{R}^{3} formed by its eigenvectors. Namely, the vectors $\mathbf{v}_{1}=(1,-1,1), \mathbf{v}_{2}=(-1,0,1)$, and $\mathbf{v}_{3}=(1,1,1)$ are eigenvectors of the matrix A belonging to distinct eigenvalues. Therefore these vectors are linearly independent. It follows that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is a basis for \mathbb{R}^{3}.

Alternatively, the existence of a basis for \mathbb{R}^{3} consisting of eigenvectors of A already follows from the fact that the matrix A has three distinct eigenvalues.
(iv) Find all eigenvalues of the matrix A^{2}.

Since A has eigenvalues $-1,1$, and 3 , it is similar to the diagonal matrix

$$
B=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right) .
$$

Namely, $A=U B U^{-1}$, where U is the matrix whose columns are vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$:

$$
U=\left(\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Then $A^{2}=U B U^{-1} U B U^{-1}=U B^{2} U^{-1}$, that is, the matrix A^{2} is similar to the diagonal matrix

$$
B^{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 9
\end{array}\right) .
$$

Similar matrices have the same characteristic polynomial, hence they have the same eigenvalues. Thus the eigenvalues of A^{2} are the same as the eigenvalues of $B^{2}: 1$ and 9 .

Bonus Problem 4 (20 pts.) Find a linear polynomial which is the best least squares fit to the following data:

$$
\begin{array}{c||l|l|l|l|l}
x & -2 & -1 & 0 & 1 & 2 \\
\hline f(x) & -3 & -2 & 1 & 2 & 5
\end{array}
$$

We are looking for a function $f(x)=c_{1}+c_{2} x$, where c_{1}, c_{2} are unknown coefficients. The data of the problem give rise to an overdetermined system of linear equations in variables c_{1} and c_{2} :

$$
\left\{\begin{array}{l}
c_{1}-2 c_{2}=-3 \\
c_{1}-c_{2}=-2 \\
c_{1}=1, \\
c_{1}+c_{2}=2 \\
c_{1}+2 c_{2}=5
\end{array}\right.
$$

This system is inconsistent. We can represent it as a matrix equation $A \mathbf{c}=\mathbf{y}$, where

$$
A=\left(\begin{array}{rr}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right), \quad \mathbf{c}=\binom{c_{1}}{c_{2}}, \quad \mathbf{y}=\left(\begin{array}{r}
-3 \\
-2 \\
1 \\
2 \\
5
\end{array}\right)
$$

The least squares solution \mathbf{c} of the above system is a solution of the system $A^{T} A \mathbf{c}=A^{T} \mathbf{y}$:

$$
\begin{gathered}
\left(\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{rr}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{r}
-3 \\
-2 \\
1 \\
2 \\
5
\end{array}\right) \\
\Longleftrightarrow\left(\begin{array}{cc}
5 & 0 \\
0 & 10
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{3}{20} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
c_{1}=3 / 5 \\
c_{2}=2
\end{array}\right.
\end{gathered}
$$

Thus the function $f(x)=\frac{3}{5}+2 x$ is the best least squares fit to the above data among linear polynomials.

Bonus Problem 5 (20 pts.) Let $L: V \rightarrow W$ be a linear mapping of a finite-dimensional vector space V to a vector space W. Show that

$$
\operatorname{dim} \operatorname{Range}(L)+\operatorname{dim} \operatorname{ker}(L)=\operatorname{dim} V .
$$

The kernel $\operatorname{ker}(L)$ is a subspace of V. Since the vector space V is finite-dimensional, so is $\operatorname{ker}(L)$. Take a basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ for the subspace $\operatorname{ker}(L)$, then extend it to a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}$ for the entire space V. We are going to prove that vectors $L\left(\mathbf{u}_{1}\right), L\left(\mathbf{u}_{2}\right), \ldots, L\left(\mathbf{u}_{m}\right)$ form a basis for the range $L(V)$. Then $\operatorname{dim} \operatorname{Range}(L)=m, \operatorname{dim} \operatorname{ker}(L)=k$, and $\operatorname{dim} V=k+m$.

Spanning: Any vector $\mathbf{w} \in \operatorname{Range}(L)$ is represented as $\mathbf{w}=L(\mathbf{v})$, where $\mathbf{v} \in V$. Then

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}+\beta_{1} \mathbf{u}_{1}+\beta_{2} \mathbf{u}_{2}+\cdots+\beta_{m} \mathbf{u}_{m}
$$

for some $\alpha_{i}, \beta_{j} \in \mathbb{R}$. It follows that

$$
\mathbf{w}=L(\mathbf{v})=\alpha_{1} L\left(\mathbf{v}_{1}\right)+\cdots+\alpha_{k} L\left(\mathbf{v}_{k}\right)+\beta_{1} L\left(\mathbf{u}_{1}\right)+\cdots+\beta_{m} L\left(\mathbf{u}_{m}\right)=\beta_{1} L\left(\mathbf{u}_{1}\right)+\cdots+\beta_{m} L\left(\mathbf{u}_{m}\right)
$$

$\left(L\left(\mathbf{v}_{i}\right)=\mathbf{0}\right.$ since $\left.\mathbf{v}_{i} \in \operatorname{ker}(L)\right)$. Thus Range (L) is spanned by the vectors $L\left(\mathbf{u}_{1}\right), L\left(\mathbf{u}_{2}\right), \ldots, L\left(\mathbf{u}_{m}\right)$.
Linear independence: Suppose that $t_{1} L\left(\mathbf{u}_{1}\right)+t_{2} L\left(\mathbf{u}_{2}\right)+\cdots+t_{m} L\left(\mathbf{u}_{m}\right)=\mathbf{0}$ for some $t_{i} \in \mathbb{R}$. Let $\mathbf{u}=t_{1} \mathbf{u}_{1}+t_{2} \mathbf{u}_{2}+\cdots+t_{m} \mathbf{u}_{m}$. Since

$$
L(\mathbf{u})=t_{1} L\left(\mathbf{u}_{1}\right)+t_{2} L\left(\mathbf{u}_{2}\right)+\cdots+t_{m} L\left(\mathbf{u}_{m}\right)=\mathbf{0},
$$

the vector \mathbf{u} belongs to the kernel of L. Therefore $\mathbf{u}=s_{1} \mathbf{v}_{1}+s_{2} \mathbf{v}_{2}+\cdots+s_{k} \mathbf{v}_{k}$ for some $s_{j} \in \mathbb{R}$. It follows that

$$
t_{1} \mathbf{u}_{1}+t_{2} \mathbf{u}_{2}+\cdots+t_{m} \mathbf{u}_{m}-s_{1} \mathbf{v}_{1}-s_{2} \mathbf{v}_{2}-\cdots-s_{k} \mathbf{v}_{k}=\mathbf{u}-\mathbf{u}=\mathbf{0} .
$$

Linear independence of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ implies that $t_{1}=t_{2}=\cdots=t_{m}=0$ (as well as $\left.s_{1}=s_{2}=\cdots=s_{k}=0\right)$. Thus the vectors $L\left(\mathbf{u}_{1}\right), L\left(\mathbf{u}_{2}\right), \ldots, L\left(\mathbf{u}_{m}\right)$ are linearly independent.

