Sample problems for the final exam

Any problem may be altered or replaced by a different one!

Problem $1(15$ pts.) Find a quadratic polynomial $p(x)$ such that $p(-1)=p(3)=6$ and $p^{\prime}(2)=p(1)$.

Problem $2(20$ pts. $) \quad$ Let $\mathbf{v}_{1}=(1,1,1), \mathbf{v}_{2}=(1,1,0)$, and $\mathbf{v}_{3}=(1,0,1)$. Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear operator on \mathbb{R}^{3} such that $L\left(\mathbf{v}_{1}\right)=\mathbf{v}_{2}, L\left(\mathbf{v}_{2}\right)=\mathbf{v}_{3}, L\left(\mathbf{v}_{3}\right)=\mathbf{v}_{1}$.
(i) Show that the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ form a basis for \mathbb{R}^{3}.
(ii) Find the matrix of the operator L relative to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.
(iii) Find the matrix of the operator L relative to the standard basis.

Problem 3 (20 pts.) Let $A=\left(\begin{array}{rrrr}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & -1 \\ 0 & 1 & 0 & 1 \\ 2 & 3 & 0 & 0\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.
(ii) Find the inverse matrix A^{-1}.

Problem 4 (25 pts.) Let $B=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix B.
(ii) Find a basis for \mathbb{R}^{3} consisting of eigenvectors of B.
(iii) Find an orthonormal basis for \mathbb{R}^{3} consisting of eigenvectors of B.
(iv) Find a diagonal matrix X and an invertible matrix U such that $B=U X U^{-1}$.

Problem 5 (20 pts.) Let V be a subspace of \mathbb{R}^{4} spanned by vectors $\mathbf{x}_{1}=(1,1,0,0)$, $\mathbf{x}_{2}=(2,0,-1,1)$, and $\mathbf{x}_{3}=(0,1,1,0)$.
(i) Find the distance from the point $\mathbf{y}=(0,0,0,4)$ to the subspace V.
(ii) Find the distance from the point \mathbf{y} to the orthogonal complement V^{\perp}.

Bonus Problem 6 (15 pts.) (i) Find a matrix $\operatorname{exponential~} \exp (t C)$, where $C=\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)$ and $t \in \mathbb{R}$.
(ii) Solve a system of differential equations

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=3 x+y \\
\frac{d y}{d t}=3 y
\end{array}\right.
$$

subject to the initial conditions $x(0)=y(0)=1$.

Bonus Problem 7 (15 pts.) Consider a linear operator $K: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
K(\mathbf{x})=D \mathbf{x}, \quad \text { where } \quad D=\frac{1}{9}\left(\begin{array}{rrr}
-4 & 7 & 4 \\
1 & -4 & 8 \\
8 & 4 & 1
\end{array}\right)
$$

The operator K is a rotation about an axis.
(i) Find the axis of rotation.
(ii) Find the angle of rotation.

