
MATH 304–503 Spring 2010

Sample problems for the final exam: Solutions
Any problem may be altered or replaced by a different one!

Problem 1 (15 pts.) Find a quadratic polynomial p(x) such that p(−1) = p(3) = 6 and
p′(2) = p(1).

Let p(x) = ax2 + bx + c. Then p(−1) = a − b + c, p(1) = a + b + c, and p(3) = 9a + 3b + c. Also,
p′(x) = 2ax + b and p′(2) = 4a + b. The coefficients a, b, and c have to be chosen so that







a − b + c = 6,
9a + 3b + c = 6,
4a + b = a + b + c.

This is a system of linear equations in variables a, b, c. To solve the system, let us convert the third
equation to the standard form and add it to the first and the second equations:







a − b + c = 6
9a + 3b + c = 6
3a − c = 0

⇐⇒







4a − b = 6
9a + 3b + c = 6
3a − c = 0

⇐⇒







4a − b = 6
12a + 3b = 6
3a − c = 0

Now divide the second equation by 3, add it to the first equation, and find the solution by back
substitution:







4a − b = 6
4a + b = 2
3a − c = 0

⇐⇒







8a = 8
4a + b = 2
3a − c = 0

⇐⇒







a = 1
4a + b = 2
3a − c = 0

⇐⇒







a = 1
b = −2
3a − c = 0

⇐⇒







a = 1
b = −2
c = 3

Thus the desired polynomial is p(x) = x2 − 2x + 3.

Problem 2 (20 pts.) Let v1 = (1, 1, 1), v2 = (1, 1, 0), and v3 = (1, 0, 1). Let L : R
3 → R

3

be a linear operator on R
3 such that L(v1) = v2, L(v2) = v3, L(v3) = v1.

(i) Show that the vectors v1,v2,v3 form a basis for R
3.

Let U be a 3 × 3 matrix such that its columns are vectors v1,v2,v3:

U =





1 1 1
1 1 0
1 0 1



 .

To find the determinant of U , we subtract the second row from the first one and then expand by the
first row:

det U =

∣

∣

∣

∣

∣

∣

0 0 1
1 1 0
1 0 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 1
1 0

∣

∣

∣

∣

= −1.

Since det U 6= 0, the vectors v1,v2,v3 are linearly independent. It follows that they form a basis for
R

3.
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(ii) Find the matrix of the operator L relative to the basis v1,v2,v3.

Let A denote the matrix of L relative to the basis v1,v2,v3. By definition, the columns of A are
coordinates of vectors L(v1), L(v2), L(v3) with respect to the basis v1,v2,v3. Since L(v1) = v2 =
0v1 + 1v2 + 0v3, L(v2) = v3 = 0v1 + 0v2 + 1v3, L(v3) = v1 = 1v1 + 0v2 + 0v3, we obtain

A =





0 0 1
1 0 0
0 1 0



 .

(iii) Find the matrix of the operator L relative to the standard basis.

Let S denote the matrix of L relative to the standard basis for R
3. We have S = UAU−1, where A

is the matrix of L relative to the basis v1,v2,v3 (already found) and U is the transition matrix from
v1,v2,v3 to the standard basis (the vectors v1,v2,v3 are consecutive columns of U):

A =





0 0 1
1 0 0
0 1 0



 , U =





1 1 1
1 1 0
1 0 1



 .

To find the inverse U−1, we merge the matrix U with the identity matrix I into one 3× 6 matrix and
apply row reduction to convert the left half U of this matrix into I. Simultaneously, the right half I
will be converted into U−1:

(U |I) =





1 1 1 1 0 0
1 1 0 0 1 0
1 0 1 0 0 1



 →





1 1 1 1 0 0
0 0 −1 −1 1 0
1 0 1 0 0 1



 →





1 1 1 1 0 0
0 0 −1 −1 1 0
0 −1 0 −1 0 1





→





1 1 1 1 0 0
0 −1 0 −1 0 1
0 0 −1 −1 1 0



 →





1 1 0 0 1 0
0 −1 0 −1 0 1
0 0 −1 −1 1 0



 →





1 0 0 −1 1 1
0 −1 0 −1 0 1
0 0 −1 −1 1 0





→





1 0 0 −1 1 1
0 1 0 1 0 −1
0 0 1 1 −1 0



 = (I|U−1).

Thus

S = UAU−1 =





1 1 1
1 1 0
1 0 1









0 0 1
1 0 0
0 1 0









−1 1 1
1 0 −1
1 −1 0





=





1 1 1
1 0 1
0 1 1









−1 1 1
1 0 −1
1 −1 0



 =





1 0 0
0 0 1
2 −1 −1



 .

Alternative solution: Let S denote the matrix of L relative to the standard basis e1 = (1, 0, 0), e2 =
(0, 1, 0), e3 = (0, 0, 1). By definition, the columns of S are vectors L(e1), L(e2), L(e3). It is easy to
observe that e2 = v1 − v3, e3 = v1 − v2, and e1 = v2 − e2 = −v1 + v2 + v3. Therefore

L(e1) = L(−v1 + v2 + v3) = −L(v1) + L(v2) + L(v3) = −v2 + v3 + v1 = (1, 0, 2),

L(e2) = L(v1 − v3) = L(v1) − L(v3) = v2 − v1 = (0, 0,−1),

L(e3) = L(v1 − v2) = L(v1) − L(v2) = v2 − v3 = (0, 1,−1).
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Thus

S =





1 0 0
0 0 1
2 −1 −1



 .

Problem 3 (20 pts.) Let A =









1 1 0 0
1 1 1 −1
0 1 0 1
2 3 0 0









.

(i) Evaluate the determinant of the matrix A.

The determinant of A is easily evaluated using column expansions:
∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0
1 1 1 −1
0 1 0 1
2 3 0 0

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

1 1 0
0 1 1
2 3 0

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 1
2 3

∣

∣

∣

∣

= 1.

Another way to evaluate detA is to convert the matrix A into the identity matrix using elementary
row operations (see below). This requires much more work but we are going to do it anyway, to find
the inverse of A.

(ii) Find the inverse matrix A−1.

First we merge the matrix A with the identity matrix into one 4 × 8 matrix

(A | I) =









1 1 0 0 1 0 0 0
1 1 1 −1 0 1 0 0
0 1 0 1 0 0 1 0
2 3 0 0 0 0 0 1









.

Then we apply elementary row operations to this matrix until the left part becomes the identity
matrix.

Subtract the first row from the second row:








1 1 0 0 1 0 0 0
1 1 1 −1 0 1 0 0
0 1 0 1 0 0 1 0
2 3 0 0 0 0 0 1









→









1 1 0 0 1 0 0 0
0 0 1 −1 −1 1 0 0
0 1 0 1 0 0 1 0
2 3 0 0 0 0 0 1









.

Subtract 2 times the first row from the fourth row:








1 1 0 0 1 0 0 0
0 0 1 −1 −1 1 0 0
0 1 0 1 0 0 1 0
2 3 0 0 0 0 0 1









→









1 1 0 0 1 0 0 0
0 0 1 −1 −1 1 0 0
0 1 0 1 0 0 1 0
0 1 0 0 −2 0 0 1









.

Interchange the second row with the fourth row:








1 1 0 0 1 0 0 0
0 0 1 −1 −1 1 0 0
0 1 0 1 0 0 1 0
0 1 0 0 −2 0 0 1









→









1 1 0 0 1 0 0 0
0 1 0 0 −2 0 0 1
0 1 0 1 0 0 1 0
0 0 1 −1 −1 1 0 0









.
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Subtract the second row from the third row:








1 1 0 0 1 0 0 0
0 1 0 0 −2 0 0 1
0 1 0 1 0 0 1 0
0 0 1 −1 −1 1 0 0









→









1 1 0 0 1 0 0 0
0 1 0 0 −2 0 0 1
0 0 0 1 2 0 1 −1
0 0 1 −1 −1 1 0 0









.

Interchange the third row with the fourth row:









1 1 0 0 1 0 0 0
0 1 0 0 −2 0 0 1
0 0 0 1 2 0 1 −1
0 0 1 −1 −1 1 0 0









→









1 1 0 0 1 0 0 0
0 1 0 0 −2 0 0 1
0 0 1 −1 −1 1 0 0
0 0 0 1 2 0 1 −1









.

Add the fourth row to the third row:








1 1 0 0 1 0 0 0
0 1 0 0 −2 0 0 1
0 0 1 −1 −1 1 0 0
0 0 0 1 2 0 1 −1









→









1 1 0 0 1 0 0 0
0 1 0 0 −2 0 0 1
0 0 1 0 1 1 1 −1
0 0 0 1 2 0 1 −1









.

Subtract the second row from the first row:








1 1 0 0 1 0 0 0
0 1 0 0 −2 0 0 1
0 0 1 0 1 1 1 −1
0 0 0 1 2 0 1 −1









→









1 0 0 0 3 0 0 −1
0 1 0 0 −2 0 0 1
0 0 1 0 1 1 1 −1
0 0 0 1 2 0 1 −1









.

Finally the left part of our 4 × 8 matrix is transformed into the identity matrix. Therefore the
current right part is the inverse matrix of A. Thus

A−1 =









1 1 0 0
1 1 1 −1
0 1 0 1
2 3 0 0









−1

=









3 0 0 −1
−2 0 0 1

1 1 1 −1
2 0 1 −1









.

As a byproduct, we can evaluate the determinant of A. We have transformed A into the identity
matrix using elementary row operations. These included two row exchanges and no row multiplica-
tions. It follows that detA = det I = 1.

Problem 4 (25 pts.) Let B =





1 1 1
1 1 1
1 1 1



.

(i) Find all eigenvalues of the matrix B.

The eigenvalues of B are roots of the characteristic equation det(B − λI) = 0. We obtain that

det(B − λI) =

∣

∣

∣

∣

∣

∣

1 − λ 1 1
1 1 − λ 1
1 1 1 − λ

∣

∣

∣

∣

∣

∣

= (1 − λ)3 − 3(1 − λ) + 2

= (1 − 3λ + 3λ2 − λ3) − 3(1 − λ) + 2 = 3λ2 − λ3 = λ2(3 − λ).
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Hence the matrix B has two eigenvalues: 0 and 3.

(ii) Find a basis for R
3 consisting of eigenvectors of B.

An eigenvector x = (x, y, z) of B associated with an eigenvalue λ is a nonzero solution of the vector
equation (B − λI)x = 0. First consider the case λ = 0. We obtain that

Bx = 0 ⇐⇒





1 1 1
1 1 1
1 1 1









x
y
z



 =





0
0
0



 ⇐⇒ x + y + z = 0.

The general solution is x = −t − s, y = t, z = s, where t, s ∈ R. Equivalently, x = t(−1, 1, 0) +
s(−1, 0, 1). Hence the eigenspace of B associated with the eigenvalue 0 is two-dimensional. It is
spanned by eigenvectors v1 = (−1, 1, 0) and v2 = (−1, 0, 1).

Now consider the case λ = 3. We obtain that

(B − 3I)x = 0 ⇐⇒





−2 1 1
1 −2 1
1 1 −2









x
y
z



 =





0
0
0





⇐⇒





1 0 −1
0 1 −1
0 0 0









x
y
z



 =





0
0
0



 ⇐⇒
{

x − z = 0,
y − z = 0.

The general solution is x = y = z = t, where t ∈ R. In particular, v3 = (1, 1, 1) is an eigenvector of B
associated with the eigenvalue 3.

The vectors v1 = (−1, 1, 0), v2 = (−1, 0, 1), and v3 = (1, 1, 1) are eigenvectors of the matrix B.
They are linearly independent since the matrix whose rows are these vectors is nonsingular:

∣

∣

∣

∣

∣

∣

−1 1 0
−1 0 1

1 1 1

∣

∣

∣

∣

∣

∣

= 3 6= 0.

It follows that v1,v2,v3 is a basis for R
3.

(iii) Find an orthonormal basis for R
3 consisting of eigenvectors of B.

It is easy to check that the vector v3 is orthogonal to v1 and v2. To transform the basis v1,v2,v3

into an orthogonal one, we only need to orthogonalize the pair v1,v2. Using the Gram-Schmidt
process, we replace the vector v2 by

u = v2 −
v2 · v1

v1 · v1

v1 = (−1, 0, 1) − 1

2
(−1, 1, 0) = (−1/2,−1/2, 1).

Now v1,u,v3 is an orthogonal basis for R
3. Since u is a linear combination of the vectors v1 and v2,

it is also an eigenvector of B associated with the eigenvalue 0.

Finally, vectors w1 =
v1

‖v1‖
, w2 =

u

‖u‖ , and w3 =
v3

‖v3‖
form an orthonormal basis for R

3

consisting of eigenvectors of B. We get that ‖v1‖ =
√

2, ‖u‖ =
√

3/2, and ‖v3‖ =
√

3. Thus

w1 =
1√
2
(−1, 1, 0), w2 =

1√
6
(−1,−1, 2), w3 =

1√
3
(1, 1, 1).
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(iv) Find a diagonal matrix X and an invertible matrix U such that B = UXU−1.

The vectors v1 = (−1, 1, 0), v2 = (−1, 0, 1), and v3 = (1, 1, 1) are eigenvectors of the matrix B
accosiated with eigenvalues 0, 0, and 3, respectively. Since these vectors form a basis for R

3, it follows
that B = UXU−1, where

X =





0 0 0
0 0 0
0 0 3



 , U =





−1 −1 1
1 0 1
0 1 1



 .

Here U is the transition matrix from the basis v1,v2,v3 to the standard basis (its columns are vectors
v1,v2,v3) while X is the matrix of the linear operator L : R

3 → R
3, L(x) = Bx with respect to the

basis v1,v2,v3.

Problem 5 (20 pts.) Let V be a subspace of R
4 spanned by vectors x1 = (1, 1, 0, 0),

x2 = (2, 0,−1, 1), and x3 = (0, 1, 1, 0).

(i) Find the distance from the point y = (0, 0, 0, 4) to the subspace V .
(ii) Find the distance from the point y to the orthogonal complement V ⊥.

The vector y is uniquely represented as y = p+o, where p ∈ V and o is orthogonal to V , that is,
o ∈ V ⊥. The vector p is the orthogonal projection of y onto the subspace V . Since (V ⊥)⊥ = V , the
vector o is the orthogonal projection of y onto the subspace V ⊥. It follows that the distance from the
point y to V equals ‖o‖ while the distance from y to V ⊥ equals ‖p‖.

The orthogonal projection p of the vector y onto the subspace V is easily computed when we have
an orthogonal basis for V . To get such a basis, we apply the Gram-Schmidt orthogonalization process
to the basis x1,x2,x3:

v1 = x1 = (1, 1, 0, 0), v2 = x2 −
x2 · v1

v1 · v1

v1 = (2, 0,−1, 1) − 2

2
(1, 1, 0, 0) = (1,−1,−1, 1),

v3 = x3 −
x3 · v1

v1 · v1

v1 −
x3 · v2

v2 · v2

v2 = (0, 1, 1, 0) − 1

2
(1, 1, 0, 0) − −2

4
(1,−1,−1, 1) = (0, 0, 1/2, 1/2).

Now that v1,v2,v3 is an orthogonal basis for V we obtain

p =
y · v1

v1 · v1

v1 +
y · v2

v2 · v2

v2 +
y · v3

v3 · v3

v3 =

=
0

2
(1, 1, 0, 0) +

4

4
(1,−1,−1, 1) +

2

1/2
(0, 0, 1/2, 1/2) = (1,−1, 1, 3).

Consequently, o = y − p = (0, 0, 0, 4) − (1,−1, 1, 3) = (−1, 1,−1, 1). Thus the distance from y to the
subspace V equals ‖o‖ = 2 and the distance from y to V ⊥ equals ‖p‖ =

√
12 = 2

√
3.

Bonus Problem 6 (15 pts.) (i) Find a matrix exponential exp(tC), where C =

(

3 1
0 3

)

and t ∈ R.

Observe that C = 3I + Y , where Y =

(

0 1
0 0

)

and I is the identity matrix. Then tC = 3tI + tY

for all t ∈ R. Clearly, matrices 3tI and tY commute: (3tI)(tY ) = (tY )(3tI) = 3t2Y . It follows that
exp(tC) = exp(3tI) exp(tY ). For any square matrix X,

exp(X) = I + X +
1

2!
X2 + · · · + 1

n!
Xn + · · ·
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In particular,

exp(3tI) = I + 3tI +
1

2!
(3tI)2 + · · · + 1

n!
(3tI)n + · · · =

(

1 + 3t +
(3t)2

2!
+ · · · + (3t)n

n!
+ · · ·

)

I = e3tI.

Further notice that Y 2 = O. Then Y n = O for any integer n ≥ 2. Consequently,

exp(tY ) = I + tY =

(

1 t
0 1

)

.

Finally,

exp(tC) = exp(3tI) exp(tY ) = e3tI

(

1 t
0 1

)

= e3t

(

1 t
0 1

)

=

(

e3t te3t

0 e3t

)

.

(ii) Solve a system of differential equations














dx

dt
= 3x + y,

dy

dt
= 3y

subject to the initial conditions x(0) = y(0) = 1.

The system can be rewritten as v′ = Cv, where

v(t) =

(

x(t)
y(t)

)

, C =

(

3 1
0 3

)

.

The initial value problem has a unique solution
(

x(t)
y(t)

)

= etCv0, where v0 =

(

x(0)
y(0)

)

=

(

1
1

)

.

By the above

etC =

(

e3t te3t

0 e3t

)

.

Thus x(t) = e3t(1 + t), y(t) = e3t.

Bonus Problem 7 (15 pts.) Consider a linear operator K : R
3 → R

3 given by

K(x) = Dx, where D =
1

9





−4 7 4
1 −4 8
8 4 1



 .

The operator K is a rotation about an axis.

(i) Find the axis of rotation.

The axis of rotation is the set of points fixed by the operator K. Hence a point x ∈ R
3 lies on the

axis if and only if K(x) = x or, equivalently, (D − I)x = 0. To solve this vector equation, we convert
the matrix D − I to reduced row echelon form:

D − I =
1

9





−13 7 4
1 −13 8
8 4 −8



 → 1

9





3 15 −12
1 −13 8
8 4 −8



 → 1

9





3 15 −12
9 −9 0
8 4 −8
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→





1 5 −4
1 −1 0
2 1 −2



 →





1 −1 0
1 5 −4
2 1 −2



 →





1 −1 0
0 6 −4
2 1 −2



 →





1 −1 0
0 6 −4
0 3 −2





→





1 −1 0
0 0 0
0 3 −2



 →





1 −1 0
0 3 −2
0 0 0



 →





1 −1 0
0 1 −2/3
0 0 0



 →





1 0 −2/3
0 1 −2/3
0 0 0



 .

Here is the list of performed operations: add 2 times the third row to the first row, add the third row
to the second row, multiply the first row by 3 and the third row by 9/4, interchange the first row with
the second row, subtract the first row from the second row, subtract 2 times the first row from the
third row, subtract 2 times the third row from the second row, interchange the second row with the
third row, multiply the second row by 1/3, and add the second row to the first row.

Therefore a point x = (x, y, z) lies on the axis if and only if x − 2

3
z = y − 2

3
z = 0. The general

solution of the system is x = y = 2

3
t, z = t, where t ∈ R. Thus the axis of rotation is the line spanned

by the vector (2, 2, 3).

(ii) Find the angle of rotation.

The trace (the sum of diagonal entries) of any square matrix is equal to the sum of its eigenvalues
(including complex eigenvalues and counting with multiplicities). Since D is a rotation matrix, it is
similar to the matrix

E =





1 0 0
0 cos φ − sinφ
0 sinφ cos φ



 ,

where φ is the angle of rotation. The matrix E has eigenvalues 1, eiφ, and e−iφ. Since the matrix D
is similar to E, it has the same eigenvalues. It follows that the trace of D, which is −7/9, is equal to

1 + eiφ + e−iφ = 1 + (cos φ + i sinφ) + (cos φ − i sinφ) = 1 + 2 cos φ.

Therefore cos φ = −8/9. Thus φ = arccos(−8/9).
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