MATH 304
 Linear Algebra

Lecture 3:
Some applications of systems of linear equations.

Matrix algebra.

System with a parameter

$$
\left\{\begin{array}{l}
y+3 z=0 \\
x+y-2 z=0 \\
x+2 y+a z=0
\end{array} \quad(a \in \mathbb{R})\right.
$$

The system is homogeneous (all right-hand sides are zeros). Therefore it is consistent ($x=y=z=0$ is a solution).
Augmented matrix: $\left(\begin{array}{rrr|r}0 & 1 & 3 & 0 \\ 1 & 1 & -2 & 0 \\ 1 & 2 & a & 0\end{array}\right)$
Since the 1st row cannot serve as a pivotal one, we interchange it with the 2 nd row:

$$
\left(\begin{array}{rrr|r}
0 & 1 & 3 & 0 \\
1 & 1 & -2 & 0 \\
1 & 2 & a & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
1 & 2 & a & 0
\end{array}\right)
$$

Now we can start the elimination.
First subtract the 1st row from the 3 rd row:

$$
\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
1 & 2 & a & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|l}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 1 & a+2 & 0
\end{array}\right)
$$

The 2 nd row is our new pivotal row.
Subtract the 2nd row from the 3rd row:

$$
\left(\begin{array}{ccc|c}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 1 & a+2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & a-1 & 0
\end{array}\right)
$$

At this point row reduction splits into two cases.
Case 1: $a \neq 1$. In this case, multiply the 3 rd row by $(a-1)^{-1}$:

$$
\left(\begin{array}{ccc|c}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & a-1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
\boxed{1} & 1 & -2 & 0 \\
0 & \boxed{1} & 3 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

The matrix is converted into row echelon form.
We proceed towards reduced row echelon form.
Subtract 3 times the 3rd row from the 2nd row:

$$
\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Add 2 times the 3 rd row to the 1 st row:

$$
\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Finally, subtract the 2 nd row from the 1st row:

$$
\left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
\boxed{1} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Thus $x=y=z=0$ is the only solution.

Case 2: $a=1$. In this case, the matrix is already in row echelon form:
$\left(\begin{array}{rrr|r}\boxed{1} & 1 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
To get reduced row echelon form, subtract the 2 nd row from the 1st row:
$\left(\begin{array}{rrr|r}1 & 1 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}\boxed{1} & 0 & -5 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
z is a free variable.

$$
\left\{\begin{array} { l }
{ x - 5 z = 0 } \\
{ y + 3 z = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=5 z \\
y=-3 z
\end{array}\right.\right.
$$

System of linear equations:
$\left\{\begin{array}{l}y+3 z=0 \\ x+y-2 z=0 \\ x+2 y+a z=0\end{array}\right.$
Solution: If $a \neq 1$ then $(x, y, z)=(0,0,0)$; if $a=1$ then $(x, y, z)=(5 t,-3 t, t), t \in \mathbb{R}$.

Applications of systems of linear equations

Problem 1. Find the point of intersection of the lines $x-y=-2$ and $2 x+3 y=6$ in \mathbb{R}^{2}.

$$
\left\{\begin{array}{l}
x-y=-2 \\
2 x+3 y=6
\end{array}\right.
$$

Problem 2. Find the point of intersection of the planes $x-y=2,2 x-y-z=3$, and $x+y+z=6$ in \mathbb{R}^{3}.

$$
\left\{\begin{array}{l}
x-y=2 \\
2 x-y-z=3 \\
x+y+z=6
\end{array}\right.
$$

Method of undetermined coefficients often involves solving systems of linear equations.

Problem 3. Find a quadratic polynomial $p(x)$ such that $p(1)=4, p(2)=3$, and $p(3)=4$.

Suppose that $p(x)=a x^{2}+b x+c$. Then $p(1)=a+b+c, p(2)=4 a+2 b+c$, $p(3)=9 a+3 b+c$.

$$
\left\{\begin{array}{l}
a+b+c=4 \\
4 a+2 b+c=3 \\
9 a+3 b+c=4
\end{array}\right.
$$

Problem 4. Evaluate $\int_{0}^{1} \frac{x(x-3)}{(x-1)^{2}(x+2)} d x$
To evaluate the integral, we need to decompose the rational function $R(x)=\frac{x(x-3)}{(x-1)^{2}(x+2)}$ into the sum of simple fractions:

$$
\begin{aligned}
& R(x)=\frac{a}{x-1}+\frac{b}{(x-1)^{2}}+\frac{c}{x+2} \\
&=\frac{a(x-1)(x+2)+b(x+2)+c(x-1)^{2}}{(x-1)^{2}(x+2)} \\
&=\frac{(a+c) x^{2}+(a+b-2 c) x+(-2 a+2 b+c)}{(x-1)^{2}(x+2)} . \\
& \qquad\left\{\begin{array}{l}
a+c=1 \\
a+b-2 c=-3 \\
-2 a+2 b+c=0
\end{array}\right.
\end{aligned}
$$

Traffic flow

Problem. Determine the amount of traffic between each of the four intersections.

Traffic flow

$$
x_{1}=?, \quad x_{2}=?, \quad x_{3}=?, \quad x_{4}=?
$$

Traffic flow

D

At each intersection, the incoming traffic has to match the outgoing traffic.

Intersection $A: \quad x_{4}+610=x_{1}+450$
Intersection $B: \quad x_{1}+400=x_{2}+640$
Intersection $C: \quad x_{2}+600=x_{3}$
Intersection D: $\quad x_{3}=x_{4}+520$

$$
\left\{\begin{array}{l}
x_{4}+610=x_{1}+450 \\
x_{1}+400=x_{2}+640 \\
x_{2}+600=x_{3} \\
x_{3}=x_{4}+520
\end{array}\right.
$$

$$
\Longleftrightarrow\left\{\begin{array}{l}
-x_{1}+x_{4}=-160 \\
x_{1}-x_{2}=240 \\
x_{2}-x_{3}=-600 \\
x_{3}-x_{4}=520
\end{array}\right.
$$

Electrical network

Problem. Determine the amount of current in each branch of the network.

Electrical network

Electrical network

Kirchhof's law \#1 (junction rule): at every node the sum of the incoming currents equals the sum of the outgoing currents.

Electrical network

Node A : $\quad i_{1}=i_{2}+i_{3}$
Node $B: \quad i_{2}+i_{3}=i_{1}$

Electrical network

Kirchhof's law \#2 (loop rule): around every loop the algebraic sum of all voltages is zero.

Ohm's law: for every resistor the voltage drop E, the current i, and the resistance R satisfy $E=i R$.

$$
\begin{aligned}
\text { Top loop: } & 9-i_{2}-4 i_{1}=0 \\
\text { Bottom loop: } & 4-2 i_{3}+i_{2}-3 i_{3}=0 \\
\text { Big loop: } & 4-2 i_{3}-4 i_{1}+9-3 i_{3}=0
\end{aligned}
$$

Remark. The 3rd equation is the sum of the first two equations.

$$
\begin{aligned}
& \left\{\begin{array}{l}
i_{1}=i_{2}+i_{3} \\
9-i_{2}-4 i_{1}=0 \\
4-2 i_{3}+i_{2}-3 i_{3}=0
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
i_{1}-i_{2}-i_{3}=0 \\
4 i_{1}+i_{2}=9 \\
-i_{2}+5 i_{3}=4
\end{array}\right.
\end{aligned}
$$

Matrices

Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

Notation: $A=\left(a_{i j}\right)_{1 \leq i \leq n, 1 \leq j \leq m}$ or simply $A=\left(a_{i j}\right)$ if the dimensions are known.

An n-dimensional vector can be represented as a $1 \times n$ matrix (row vector) or as an $n \times 1$ matrix (column vector):

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad\left(\begin{array}{c}
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

An $m \times n$ matrix $A=\left(a_{i j}\right)$ can be regarded as a column of n-dimensional row vectors or as a row of m-dimensional column vectors:

$$
A=\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right), \quad \mathbf{v}_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)
$$

$$
A=\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right), \quad \mathbf{w}_{j}=\left(\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\vdots \\
a_{m j}
\end{array}\right)
$$

Vector algebra

Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be n-dimensional vectors, and $r \in \mathbb{R}$ be a scalar.

Vector sum: $\mathbf{a}+\mathbf{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)$
Scalar multiple: $\quad r \mathbf{a}=\left(r a_{1}, r a_{2}, \ldots, r a_{n}\right)$
Zero vector: $\quad \mathbf{0}=(0,0, \ldots, 0)$
Negative of a vector: $\quad-\mathbf{b}=\left(-b_{1},-b_{2}, \ldots,-b_{n}\right)$
Vector difference:
$\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})=\left(a_{1}-b_{1}, a_{2}-b_{2}, \ldots, a_{n}-b_{n}\right)$

Given n-dimensional vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ and scalars $r_{1}, r_{2}, \ldots, r_{k}$, the expression

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}
$$

is called a linear combination of vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$.

Also, vector addition and scalar multiplication are called linear operations.

Matrix algebra

Definition. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be $m \times n$ matrices. The sum $A+B$ is defined to be the $m \times n$ matrix $C=\left(c_{i j}\right)$ such that $c_{i j}=a_{i j}+b_{i j}$ for all indices i, j.

That is, two matrices with the same dimensions can be added by adding their corresponding entries.

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)+\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right)=\left(\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22} \\
a_{31}+b_{31} & a_{32}+b_{32}
\end{array}\right)
$$

Definition. Given an $m \times n$ matrix $A=\left(a_{i j}\right)$ and a number r, the scalar multiple $r A$ is defined to be the $m \times n$ matrix $D=\left(d_{i j}\right)$ such that $d_{i j}=r a_{i j}$ for all indices i, j.

That is, to multiply a matrix by a scalar r, one multiplies each entry of the matrix by r.

$$
r\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{lll}
r a_{11} & r a_{12} & r a_{13} \\
r a_{21} & r a_{22} & r a_{23} \\
r a_{31} & r a_{32} & r a_{33}
\end{array}\right)
$$

The $m \times n$ zero matrix (all entries are zeros) is denoted $O_{m n}$ or simply O.

Negative of a matrix: $-A$ is defined as $(-1) A$. Matrix difference: $A-B$ is defined as $A+(-B)$.

As far as the linear operations (addition and scalar multiplication) are concerned, the $m \times n$ matrices
can be regarded as mn-dimensional vectors.

Examples

$$
\begin{aligned}
& A=\left(\begin{array}{rrr}
3 & 2 & -1 \\
1 & 1 & 1
\end{array}\right), \quad B=\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 1
\end{array}\right), \\
& C=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right), \quad D=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

$$
A+B=\left(\begin{array}{lll}
5 & 2 & 0 \\
1 & 2 & 2
\end{array}\right), \quad A-B=\left(\begin{array}{rrr}
1 & 2 & -2 \\
1 & 0 & 0
\end{array}\right),
$$

$$
2 C=\left(\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right), \quad 3 D=\left(\begin{array}{ll}
3 & 3 \\
0 & 3
\end{array}\right),
$$

$2 C+3 D=\left(\begin{array}{ll}7 & 3 \\ 0 & 5\end{array}\right), \quad A+D$ is not defined.

Properties of linear operations

$$
\begin{aligned}
& (A+B)+C=A+(B+C) \\
& A+B=B+A \\
& A+O=O+A=A \\
& A+(-A)=(-A)+A=O \\
& r(s A)=(r s) A \\
& r(A+B)=r A+r B \\
& (r+s) A=r A+s A \\
& 1 A=A \\
& 0 A=O
\end{aligned}
$$

