MATH 304 Linear Algebra

Lecture 11: Basis and dimension.

Basis

Definition. Let V be a vector space. A linearly independent spanning set for V is called a **basis**.

Equivalently, a subset $S \subset V$ is a basis for V if any vector $\mathbf{v} \in V$ is *uniquely represented* as a linear combination

$$\mathbf{v}=r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k,$$

where $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are distinct vectors from S and $r_1, \ldots, r_k \in \mathbb{R}$.

Examples. • Standard basis for \mathbb{R}^n : $\mathbf{e}_1 = (1, 0, 0, \dots, 0, 0), \ \mathbf{e}_2 = (0, 1, 0, \dots, 0, 0), \dots, \ \mathbf{e}_n = (0, 0, 0, \dots, 0, 1).$

• Matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ form a basis for $\mathcal{M}_{2,2}(\mathbb{R})$.

• Polynomials $1, x, x^2, \dots, x^{n-1}$ form a basis for $\mathcal{P}_n = \{a_0 + a_1x + \dots + a_{n-1}x^{n-1} : a_i \in \mathbb{R}\}.$

• The infinite set $\{1, x, x^2, \dots, x^n, \dots\}$ is a basis for \mathcal{P} , the space of all polynomials.

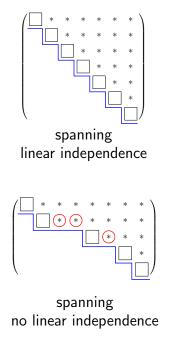
Let $\mathbf{v}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$ and $r_1, r_2, \dots, r_k \in \mathbb{R}$. The vector equation $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_k\mathbf{v}_k = \mathbf{v}$ is equivalent to the matrix equation $A\mathbf{x} = \mathbf{v}$, where

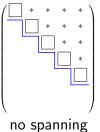
$$A = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k), \qquad \mathbf{x} = \begin{pmatrix} r_1 \\ \vdots \\ r_k \end{pmatrix}$$

That is, A is the $n \times k$ matrix such that vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are consecutive columns of A.

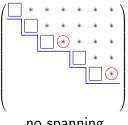
• Vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ span \mathbb{R}^n if the row echelon form of A has no zero rows.

• Vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly independent if the row echelon form of A has a leading entry in each column (no free variables).





linear independence



no spanning no linear independence

Bases for \mathbb{R}^n

Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ be vectors in \mathbb{R}^n .

Theorem 1 If k < n then the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ do not span \mathbb{R}^n .

Theorem 2 If k > n then the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are linearly dependent.

Theorem 3 If k = n then the following conditions are equivalent:

(i) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for \mathbb{R}^n ; (ii) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a spanning set for \mathbb{R}^n ; (iii) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a linearly independent set.

Dimension

Theorem 1 Any vector space has a basis.

Theorem 2 If a vector space V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The **dimension** of a vector space V, denoted dim V, is the number of elements in any of its bases.

Examples. • dim $\mathbb{R}^n = n$

• $\mathcal{M}_{2,2}(\mathbb{R})$: the space of 2×2 matrices dim $\mathcal{M}_{2,2}(\mathbb{R}) = 4$

• $\mathcal{M}_{m,n}(\mathbb{R})$: the space of $m \times n$ matrices dim $\mathcal{M}_{m,n}(\mathbb{R}) = mn$

• \mathcal{P}_n : polynomials of degree less than ndim $\mathcal{P}_n = n$

• $\mathcal{P}:$ the space of all polynomials $\dim \mathcal{P} = \infty$

• $\{\boldsymbol{0}\}:$ the trivial vector space $\text{dim}\;\{\boldsymbol{0}\}=0$

Problem. Find the dimension of the plane x + 2z = 0 in \mathbb{R}^3 .

The general solution of the equation x + 2z = 0 is

$$\left\{egin{array}{ll} x=-2s\ y=t\ z=s\end{array}
ight.$$

That is, (x, y, z) = (-2s, t, s) = t(0, 1, 0) + s(-2, 0, 1). Hence the plane is the span of vectors $\mathbf{v}_1 = (0, 1, 0)$ and $\mathbf{v}_2 = (-2, 0, 1)$. These vectors are linearly independent as they are not parallel.

Thus $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis so that the dimension of the plane is 2.

How to find a basis?

- **Theorem** Let S be a subset of a vector space V. Then the following conditions are equivalent:
- (i) S is a linearly independent spanning set for V, i.e., a basis;
- (ii) S is a minimal spanning set for V;
- (iii) S is a maximal linearly independent subset of V.

"Minimal spanning set" means "remove any element from this set, and it is no longer a spanning set".

"Maximal linearly independent subset" means "add any element of V to this set, and it will become linearly dependent".

Theorem Let V be a vector space. Then

(i) any spanning set for V can be reduced to a minimal spanning set;

(ii) any linearly independent subset of V can be extended to a maximal linearly independent set.

Equivalently, any spanning set contains a basis, while any linearly independent set is contained in a basis.

Corollary A vector space is finite-dimensional if and only if it is spanned by a finite set.

How to find a basis?

Approach 1. Get a spanning set for the vector space, then reduce this set to a basis.

Proposition Let $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k$ be a spanning set for a vector space V. If \mathbf{v}_0 is a linear combination of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ then $\mathbf{v}_1, \dots, \mathbf{v}_k$ is also a spanning set for V.

Indeed, if
$$\mathbf{v}_0 = r_1\mathbf{v}_1 + \cdots + r_k\mathbf{v}_k$$
, then
 $t_0\mathbf{v}_0 + t_1\mathbf{v}_1 + \cdots + t_k\mathbf{v}_k =$
 $= (t_0r_1 + t_1)\mathbf{v}_1 + \cdots + (t_0r_k + t_k)\mathbf{v}_k.$

How to find a basis?

Approach 2. Build a maximal linearly independent set adding one vector at a time.

If the vector space V is trivial, it has the empty basis. If $V \neq \{\mathbf{0}\}$, pick any vector $\mathbf{v}_1 \neq \mathbf{0}$. If \mathbf{v}_1 spans V, it is a basis. Otherwise pick any vector $\mathbf{v}_2 \in V$ that is not in the span of \mathbf{v}_1 . If \mathbf{v}_1 and \mathbf{v}_2 span V, they constitute a basis. Otherwise pick any vector $\mathbf{v}_3 \in V$ that is not in the span of \mathbf{v}_1 and \mathbf{v}_2 .

And so on...

Problem. Find a basis for the vector space V spanned by vectors $\mathbf{w}_1 = (1, 1, 0)$, $\mathbf{w}_2 = (0, 1, 1)$, $\mathbf{w}_3 = (2, 3, 1)$, and $\mathbf{w}_4 = (1, 1, 1)$.

To pare this spanning set, we need to find a relation of the form $r_1\mathbf{w}_1+r_2\mathbf{w}_2+r_3\mathbf{w}_3+r_4\mathbf{w}_4 = \mathbf{0}$, where $r_i \in \mathbb{R}$ are not all equal to zero. Equivalently,

$$\begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

To solve this system of linear equations for r_1 , r_2 , r_3 , r_4 , we apply row reduction.

$$\begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\left\{ \begin{array}{l} r_{1} + 2r_{3} = 0 \\ r_{2} + r_{3} = 0 \\ r_{4} = 0 \end{array} \right. \iff \left\{ \begin{array}{l} r_{1} = -2r_{3} \\ r_{2} = -r_{3} \\ r_{4} = 0 \end{array} \right.$$

General solution: $(r_1, r_2, r_3, r_4) = (-2t, -t, t, 0), t \in \mathbb{R}$. Particular solution: $(r_1, r_2, r_3, r_4) = (2, 1, -1, 0)$. **Problem.** Find a basis for the vector space V spanned by vectors $\mathbf{w}_1 = (1, 1, 0)$, $\mathbf{w}_2 = (0, 1, 1)$, $\mathbf{w}_3 = (2, 3, 1)$, and $\mathbf{w}_4 = (1, 1, 1)$.

We have obtained that $2\mathbf{w}_1 + \mathbf{w}_2 - \mathbf{w}_3 = \mathbf{0}$. Hence any of vectors $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ can be dropped. For instance, $V = \text{Span}(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_4)$.

Let us check whether vectors $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_4$ are linearly independent:

$$\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1 \neq 0.$$

They are!!! It follows that $V = \mathbb{R}^3$ and $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_4\}$ is a basis for V.

Vectors $\mathbf{v}_1 = (0, 1, 0)$ and $\mathbf{v}_2 = (-2, 0, 1)$ are linearly independent.

Problem. Extend the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ to a basis for \mathbb{R}^3 .

Our task is to find a vector \mathbf{v}_3 that is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 .

Then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ will be a basis for \mathbb{R}^3 .

Hint 1. \mathbf{v}_1 and \mathbf{v}_2 span the plane x + 2z = 0.

The vector $\mathbf{v}_3 = (1, 1, 1)$ does not lie in the plane x + 2z = 0, hence it is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . Thus $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for \mathbb{R}^3 .

Vectors $\mathbf{v}_1 = (0, 1, 0)$ and $\mathbf{v}_2 = (-2, 0, 1)$ are linearly independent.

Problem. Extend the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ to a basis for \mathbb{R}^3 . Our task is to find a vector \mathbf{v}_3 that is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . Then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ will be a basis for \mathbb{R}^3 .

Hint 2. At least one of vectors $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, and $\mathbf{e}_3 = (0, 0, 1)$ is a desired one.

Let us check that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_1\}$ and $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_3\}$ are two bases for \mathbb{R}^3 :

$$\begin{vmatrix} 0 & -2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = 1 \neq 0, \qquad \begin{vmatrix} 0 & -2 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 2 \neq 0.$$