MATH 304
 Linear Algebra
 Lecture 15:
 Kernel and range.
 General linear equation.
 Marix transformations.

Linear transformation

Definition. Given vector spaces V_{1} and V_{2}, a mapping $L: V_{1} \rightarrow V_{2}$ is linear if

$$
\begin{gathered}
L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y}), \\
L(r \mathbf{x})=r L(\mathbf{x})
\end{gathered}
$$

for any $\mathbf{x}, \mathbf{y} \in V_{1}$ and $r \in \mathbb{R}$.
Basic properties of linear mappings:

- $L\left(r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}\right)=r_{1} L\left(\mathbf{v}_{1}\right)+\cdots+r_{k} L\left(\mathbf{v}_{k}\right)$ for all $k \geq 1, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V_{1}$, and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.
- $L\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}$, where $\mathbf{0}_{1}$ and $\mathbf{0}_{2}$ are zero vectors in V_{1} and V_{2}, respectively.
- $L(-\mathbf{v})=-L(\mathbf{v})$ for any $\mathbf{v} \in V_{1}$.

Examples of linear mappings

- Scaling $L: V \rightarrow V, L(\mathbf{v})=s \mathbf{v}$, where $s \in \mathbb{R}$. $L(\mathbf{x}+\mathbf{y})=s(\mathbf{x}+\mathbf{y})=s \mathbf{x}+s \mathbf{y}=L(\mathbf{x})+L(\mathbf{y})$, $L(r \mathbf{x})=s(r \mathbf{x})=r(s \mathbf{x})=r L(\mathbf{x})$.
- Dot product with a fixed vector $\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}, \ell(\mathbf{v})=\mathbf{v} \cdot \mathbf{v}_{0}$, where $\mathbf{v}_{0} \in \mathbb{R}^{n}$. $\ell(\mathbf{x}+\mathbf{y})=(\mathbf{x}+\mathbf{y}) \cdot \mathbf{v}_{0}=\mathbf{x} \cdot \mathbf{v}_{0}+\mathbf{y} \cdot \mathbf{v}_{0}=\ell(\mathbf{x})+\ell(\mathbf{y})$, $\ell(r \mathbf{x})=(r \mathbf{x}) \cdot \mathbf{v}_{0}=r\left(\mathbf{x} \cdot \mathbf{v}_{0}\right)=r \ell(\mathbf{x})$.
- Cross product with a fixed vector
$L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, L(\mathbf{v})=\mathbf{v} \times \mathbf{v}_{0}$, where $\mathbf{v}_{0} \in \mathbb{R}^{3}$.
- Multiplication by a fixed matrix
$L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, L(\mathbf{v})=A \mathbf{v}$, where A is an $m \times n$ matrix and all vectors are column vectors.

Linear mappings of functional vector spaces

- Evaluation at a fixed point $\ell: F(\mathbb{R}) \rightarrow \mathbb{R}, \quad \ell(f)=f(a)$, where $a \in \mathbb{R}$.
- Multiplication by a fixed function $L: F(\mathbb{R}) \rightarrow F(\mathbb{R}), \quad L(f)=g f$, where $g \in F(\mathbb{R})$.
- Differentiation $D: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R}), \quad L(f)=f^{\prime}$.
$D(f+g)=(f+g)^{\prime}=f^{\prime}+g^{\prime}=D(f)+D(g)$, $D(r f)=(r f)^{\prime}=r f^{\prime}=r D(f)$.
- Integration over a finite interval
$\ell: C(\mathbb{R}) \rightarrow \mathbb{R}, \quad \ell(f)=\int_{a}^{b} f(x) d x$, where $a, b \in \mathbb{R}, a<b$.

Properties of linear mappings

- If a linear mapping $L: V \rightarrow W$ is invertible then the inverse mapping $L^{-1}: W \rightarrow V$ is also linear.
- If $L: V \rightarrow W$ and $M: W \rightarrow X$ are linear mappings then the composition $M \circ L: V \rightarrow X$ is also linear.
- If $L_{1}: V \rightarrow W$ and $L_{2}: V \rightarrow W$ are linear mappings then the sum $L_{1}+L_{2}$ is also linear.

Linear differential operators

- an ordinary differential operator

$$
L: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R}), \quad L=g_{0} \frac{d^{2}}{d x^{2}}+g_{1} \frac{d}{d x}+g_{2}
$$

where g_{0}, g_{1}, g_{2} are smooth functions on \mathbb{R}.
That is, $L(f)=g_{0} f^{\prime \prime}+g_{1} f^{\prime}+g_{2} f$.

- Laplace's operator $\Delta: C^{\infty}\left(\mathbb{R}^{2}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{2}\right)$,

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

(a.k.a. the Laplacian; also denoted by ∇^{2}).

Range and kernel

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear mapping.

Definition. The range (or image) of L is the set of all vectors $\mathbf{w} \in W$ such that $\mathbf{w}=L(\mathbf{v})$ for some $\mathbf{v} \in V$. The range of L is denoted $L(V)$.
The kernel of L, denoted $\operatorname{ker} L$, is the set of all vectors $\mathbf{v} \in V$ such that $L(\mathbf{v})=\mathbf{0}$.

Theorem (i) The range of L is a subspace of W.
(ii) The kernel of L is a subspace of V.

Example. $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
The kernel $\operatorname{ker} L$ is the nullspace of the matrix.

$$
L\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=x\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+y\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right)+z\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right)
$$

The range $f\left(\mathbb{R}^{3}\right)$ is the column space of the matrix.

Example. $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, L$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & -1 \\
1 & 2 & -1 \\
1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
$$

The range of L is spanned by vectors $(1,1,1),(0,2,0)$, and $(-1,-1,-1)$. It follows that $L\left(\mathbb{R}^{3}\right)$ is the plane spanned by $(1,1,1)$ and ($0,1,0$).
To find er L, we apply row reduction to the matrix:

$$
\left(\begin{array}{rrr}
1 & 0 & -1 \\
1 & 2 & -1 \\
1 & 0 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Hence $(x, y, z) \in \operatorname{ker} L$ if $x-z=y=0$.
It follows that er L is the line spanned by $(1,0,1)$.

More examples

$$
f: \mathcal{M}_{2}(\mathbb{R}) \rightarrow \mathcal{M}_{2}(\mathbb{R}), \quad f(A)=A+A^{T}
$$

$$
f\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
2 a & b+c \\
b+c & 2 d
\end{array}\right)
$$

ker f is the subspace of anti-symmetric matrices, the range of f is the subspace of symmetric matrices.
$g: \mathcal{M}_{2}(\mathbb{R}) \rightarrow \mathcal{M}_{2}(\mathbb{R}), \quad g(A)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) A$.
$g\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}c & d \\ 0 & 0\end{array}\right)$.
The range of g is the subspace of matrices with the zero second row, ker g is the same as the range
$\Longrightarrow g(g(A))=0$.

General linear equations

Definition. A linear equation is an equation of the form

$$
L(\mathbf{x})=\mathbf{b}
$$

where $L: V \rightarrow W$ is a linear mapping, \mathbf{b} is a given vector from W, and \mathbf{x} is an unknown vector from V.

The range of L is the set of all vectors $\mathbf{b} \in W$ such that the equation $L(\mathbf{x})=\mathbf{b}$ has a solution.
The kernel of L is the solution set of the homogeneous linear equation $L(\mathbf{x})=\mathbf{0}$.

Theorem If the linear equation $L(\mathbf{x})=\mathbf{b}$ is solvable then the general solution is

$$
\mathbf{x}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}
$$

where \mathbf{x}_{0} is a particular solution, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a basis for the kernel of L, and t_{1}, \ldots, t_{k} are arbitrary scalars.

Example. $\left\{\begin{array}{l}x+y+z=4, \\ x+2 y=3 .\end{array}\right.$
$L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
Linear equation: $L(\mathbf{x})=\mathbf{b}$, where $\mathbf{b}=\binom{4}{3}$.

$$
\begin{gathered}
\left(\begin{array}{lll|l}
1 & 1 & 1 & 4 \\
1 & 2 & 0 & 3
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 1 & 1 & 4 \\
0 & 1 & -1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 2 & 5 \\
0 & 1 & -1 & -1
\end{array}\right) \\
\left\{\begin{array} { l }
{ x + 2 z = 5 } \\
{ y - z = - 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=5-2 z \\
y=-1+z
\end{array}\right.\right.
\end{gathered}
$$

$$
(x, y, z)=(5-2 t,-1+t, t)=(5,-1,0)+t(-2,1,1)
$$

Example. $u^{\prime \prime}(x)+u(x)=e^{2 x}$.
Linear operator $L: C^{2}(\mathbb{R}) \rightarrow C(\mathbb{R}), \quad L u=u^{\prime \prime}+u$.
Linear equation: $L u=b$, where $b(x)=e^{2 x}$.
It can be shown that the range of L is the entire space $C(\mathbb{R})$ while the kernel of L is spanned by the functions $\sin x$ and $\cos x$.
Particular solution: $u_{0}=\frac{1}{5} e^{2 x}$.
Thus the general solution is

$$
u(x)=\frac{1}{5} e^{2 x}+t_{1} \sin x+t_{2} \cos x
$$

Matrix transformations

Any $m \times n$ matrix A gives rise to a transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $L(\mathbf{x})=A \mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^{n}$ and $L(\mathbf{x}) \in \mathbb{R}^{m}$ are regarded as column vectors. This transformation is linear.

Example. $L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 2 \\ 3 & 4 & 7 \\ 0 & 5 & 8\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
Let $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0), \mathbf{e}_{3}=(0,0,1)$ be the standard basis for \mathbb{R}^{3}. We have that $L\left(\mathbf{e}_{1}\right)=(1,3,0)$, $L\left(\mathbf{e}_{2}\right)=(0,4,5), L\left(\mathbf{e}_{3}\right)=(2,7,8)$. Thus $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), L\left(\mathbf{e}_{3}\right)$ are columns of the matrix.

Problem. Find a linear mapping $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $L\left(\mathbf{e}_{1}\right)=(1,1), L\left(\mathbf{e}_{2}\right)=(0,-2)$, $L\left(\mathbf{e}_{3}\right)=(3,0)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is the standard basis for \mathbb{R}^{3}.

$$
\begin{gathered}
L(x, y, z)=L\left(x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}\right) \\
=x L\left(\mathbf{e}_{1}\right)+y L\left(\mathbf{e}_{2}\right)+z L\left(\mathbf{e}_{3}\right) \\
=x(1,1)+y(0,-2)+z(3,0)=(x+3 z, x-2 y) \\
L(x, y, z)=\binom{x+3 z}{x-2 y}=\left(\begin{array}{rrr}
1 & 0 & 3 \\
1 & -2 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\end{gathered}
$$

Columns of the matrix are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), L\left(\mathbf{e}_{3}\right)$.

Theorem Suppose $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map. Then there exists an $m \times n$ matrix A such that $L(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Columns of A are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), \ldots, L\left(\mathbf{e}_{n}\right)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ is the standard basis for \mathbb{R}^{n}.

$$
\begin{gathered}
\mathbf{y}=A \mathbf{x} \Longleftrightarrow\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
\Longleftrightarrow\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=x_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right)+x_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right)
\end{gathered}
$$

Change of coordinates

Let V be a vector space.
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and $g_{1}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be another basis for V and $g_{2}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

The composition $g_{2} \circ g_{1}^{-1}$ is a linear mapping of \mathbb{R}^{n} to itself. It is represented as $\mathbf{x} \mapsto U \mathbf{x}$, where U is an $n \times n$ matrix. U is called the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2} \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \mathbf{u}_{2} \ldots, \mathbf{u}_{n}$. Columns of U are coordinates of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$.

Matrix of a linear transformation

Let V, W be vector spaces and $f: V \rightarrow W$ be a linear map. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and $g_{1}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}$ be a basis for W and $g_{2}: W \rightarrow \mathbb{R}^{m}$ be the coordinate mapping corresponding to this basis.

The composition $g_{2} \circ f \circ g_{1}^{-1}$ is a linear mapping of \mathbb{R}^{n} to \mathbb{R}^{m}. It is represented as $\mathbf{x} \mapsto A \mathbf{x}$, where A is an $m \times n$ matrix. A is called the matrix of f with respect to bases $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$. Columns of A are coordinates of vectors $f\left(\mathbf{v}_{1}\right), \ldots, f\left(\mathbf{v}_{n}\right)$ with respect to the basis $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$.

