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Linear Algebra

Lecture 17:
Euclidean structure in R

n (continued).

Orthogonal complement.
Orthogonal projection.



Vectors: geometric approach
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• A vector is represented by a directed segment.
• Directed segment is drawn as an arrow.
• Different arrows represent the same vector if

they are of the same length and direction.

Notation:
−→
AB (=

−−→
A′B ′).



Linear structure: vector addition

Given vectors a and b, their sum a + b is defined
by the rule

−→
AB +

−→
BC =

−→
AC .

That is, choose points A, B , C so that
−→
AB = a and−→

BC = b. Then a + b =
−→
AC .
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Linear structure: scalar multiplication

Let v be a vector and r ∈ R. By definition, rv is a
vector whose magnitude is |r | times the magnitude
of v. The direction of rv coincides with that of v if
r > 0. If r < 0 then the directions of rv and v are
opposite.
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Beyond linearity: Euclidean structure

Euclidean structure includes:
• length of a vector: |x|,
• angle between vectors: θ,
• dot product: x · y = |x| |y| cos θ.
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Vectors: algebraic approach

An n-dimensional coordinate vector is an element of
R

n, i.e., an ordered n-tuple (x1, x2, . . . , xn) of real
numbers.

Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be
vectors, and r ∈ R be a scalar. Then, by definition,

a + b = (a1 + b1, a2 + b2, . . . , an + bn),

ra = (ra1, ra2, . . . , ran),

0 = (0, 0, . . . , 0),

−b = (−b1,−b2, . . . ,−bn),

a − b = a + (−b) = (a1 − b1, a2 − b2, . . . , an − bn).



Cartesian coordinates: geometric meets algebraic

(−3, 2)

(2, 1)

(−3, 2)

(2, 1)

Once we specify an origin O, each point A is

associated a position vector
−→
OA. Conversely, every

vector has a unique representative with tail at O.

Cartesian coordinates allow us to identify a line, a
plane, and space with R, R

2, and R
3, respectively.



Length and distance

Definition. The length of a vector
v = (v1, v2, . . . , vn) ∈ R

n is

‖v‖ =
√

v 2
1 + v 2

2 + · · · + v 2
n
.

The distance between vectors/points x and y is
‖y − x‖.

Properties of length:

‖x‖ ≥ 0, ‖x‖ = 0 only if x = 0 (positivity)

‖rx‖ = |r | ‖x‖ (homogeneity)

‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality)



Scalar product

Definition. The scalar product of vectors
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is

x · y = x1y1 + x2y2 + · · · + xnyn.

Properties of scalar product:

x · x ≥ 0, x · x = 0 only if x = 0 (positivity)
x · y = y · x (symmetry)
(x + y) · z = x · z + y · z (distributive law)
(rx) · y = r(x · y) (homogeneity)

In particular, x · y is a bilinear function (i.e., it is
both a linear function of x and a linear function of y).



Relations between lengths and scalar products:

‖x‖ =
√

x · x
|x · y| ≤ ‖x‖ ‖y‖ (Cauchy-Schwarz inequality)

‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2 x·y

By the Cauchy-Schwarz inequality, for any nonzero
vectors x, y ∈ R

n we have

cos θ =
x · y

‖x‖ ‖y‖ for some 0 ≤ θ ≤ π.

θ is called the angle between the vectors x and y.
The vectors x and y are said to be orthogonal
(denoted x ⊥ y) if x · y = 0 (i.e., if θ = 90o).



Problem. Find the angle θ between vectors
x = (2,−1) and y = (3, 1).

x · y = 5, ‖x‖ =
√

5, ‖y‖ =
√

10.

cos θ =
x · y

‖x‖ ‖y‖ =
5√

5
√

10
=

1√
2

=⇒ θ = 45o

Problem. Find the angle φ between vectors
v = (−2, 1, 3) and w = (4, 5, 1).

v · w = 0 =⇒ v ⊥ w =⇒ φ = 90o



Orthogonality

Definition 1. Vectors x, y ∈ R
n are said to be

orthogonal (denoted x ⊥ y) if x · y = 0.

Definition 2. A vector x ∈ R
n is said to be

orthogonal to a nonempty set Y ⊂ R
n (denoted

x ⊥ Y ) if x · y = 0 for any y ∈ Y .

Definition 3. Nonempty sets X , Y ⊂ R
n are said

to be orthogonal (denoted X ⊥ Y ) if x · y = 0
for any x ∈ X and y ∈ Y .



Examples in R
3. • The line x = y = 0 is

orthogonal to the line y = z = 0.
Indeed, if v = (0, 0, z) and w = (x , 0, 0) then v · w = 0.

• The line x = y = 0 is orthogonal to the plane
z = 0.
Indeed, if v = (0, 0, z) and w = (x , y , 0) then v · w = 0.

• The line x = y = 0 is not orthogonal to the
plane z = 1.
The vector v = (0, 0, 1) belongs to both the line and the
plane, and v · v = 1 6= 0.

• The plane z = 0 is not orthogonal to the plane
y = 0.
The vector v = (1, 0, 0) belongs to both planes and
v · v = 1 6= 0.



Proposition 1 If X , Y ∈ R
n are orthogonal sets

then either they are disjoint or X ∩ Y = {0}.
Proof: v ∈ X ∩ Y =⇒ v ⊥ v =⇒ v · v = 0 =⇒ v = 0.

Proposition 2 Let V be a subspace of R
n and S

be a spanning set for V . Then for any x ∈ R
n

x ⊥ S =⇒ x ⊥ V .

Proof: Any v ∈ V is represented as v = a1v1 + · · · + akvk ,
where vi ∈ S and ai ∈ R. If x ⊥ S then

x · v = a1(x · v1) + · · · + ak(x · vk) = 0 =⇒ x ⊥ v.

Example. The vector v = (1, 1, 1) is orthogonal to
the plane spanned by vectors w1 = (2,−3, 1) and
w2 = (0, 1,−1) (because v · w1 = v · w2 = 0).



Orthogonal complement

Definition. Let S ⊂ R
n. The orthogonal

complement of S , denoted S⊥, is the set of all
vectors x ∈ R

n that are orthogonal to S . That is,
S⊥ is the largest subset of R

n orthogonal to S .

Theorem 1 S⊥ is a subspace of R
n.

Note that S ⊂ (S⊥)⊥, hence Span(S) ⊂ (S⊥)⊥.

Theorem 2 (S⊥)⊥ = Span(S). In particular, for
any subspace V we have (V⊥)⊥ = V .

Example. Consider a line L = {(x , 0, 0) | x ∈ R}
and a plane Π = {(0, y , z) | y , z ∈ R} in R

3.
Then L⊥ = Π and Π⊥ = L.



Fundamental subspaces

Definition. Given an m×n matrix A, let

N(A) = {x ∈ R
n | Ax = 0},

R(A) = {b ∈ R
m | b = Ax for some x ∈ R

n}.

R(A) is the range of a linear mapping L : R
n → R

m,
L(x) = Ax. N(A) is the kernel of L.

Also, N(A) is the nullspace of the matrix A while
R(A) is the column space of A. The row space of
A is R(AT ).

The subspaces N(A), R(AT ) ⊂ R
n and

R(A), N(AT ) ⊂ R
m are fundamental subspaces

associated to the matrix A.



Theorem N(A) = R(AT )⊥, N(AT ) = R(A)⊥.
That is, the nullspace of a matrix is the orthogonal
complement of its row space.

Proof: The equality Ax = 0 means that the vector x is
orthogonal to rows of the matrix A. Therefore N(A) = S⊥,
where S is the set of rows of A. It remains to note that
S⊥ = Span(S)⊥ = R(AT )⊥.

Corollary Let V be a subspace of R
n. Then

dim V + dim V⊥ = n.

Proof: Pick a basis v1, . . . , vk for V . Let A be the k×n

matrix whose rows are vectors v1, . . . , vk . Then V = R(AT )
and V⊥ = N(A). Consequently, dim V and dim V⊥ are rank
and nullity of A. Therefore dim V + dim V⊥ equals the
number of columns of A, which is n.



Orthogonal projection

Theorem 1 Let V be a subspace of R
n. Then

any vector x ∈ R
n is uniquely represented as

x = p + o, where p ∈ V and o ∈ V⊥.

In the above expansion, p is called the orthogonal
projection of the vector x onto the subspace V .

Theorem 2 ‖x − v‖ > ‖x − p‖ for any v 6= p in V .

Thus ‖o‖ = ‖x − p‖ = min
v∈V

‖x − v‖ is the

distance from the vector x to the subspace V .



Orthogonal projection onto a vector

Let x, y ∈ R
n, with y 6= 0.

Then there exists a unique decomposition x = p+o

such that p is parallel to y and o is orthogonal to y.

y

p

xo

p = orthogonal projection of x onto y



Orthogonal projection onto a vector

Let x, y ∈ R
n, with y 6= 0.

Then there exists a unique decomposition x = p+o
such that p is parallel to y and o is orthogonal to y.

We have p = αy for some α ∈ R. Then

0 = o · y = (x − αy) · y = x · y − αy · y.

=⇒ α =
x · y
y · y =⇒ p =

x · y
y · y y



Problem. Find the distance from the point
x = (3, 1) to the line spanned by y = (2,−1).

Consider the decomposition x = p + o, where p is parallel to
y while o ⊥ y. The required distance is the length of the
orthogonal component o.

p =
x · y
y · y y =

5

5
(2,−1) = (2,−1),

o = x − p = (3, 1) − (2,−1) = (1, 2), ‖o‖ =
√

5.

Problem. Find the point on the line y = −x that
is closest to the point (3, 4).

The required point is the projection p of v = (3, 4) on the
vector w = (1,−1) spanning the line y = −x .

p =
v · w
w · w w =

−1

2
(1,−1) =

(

−1

2
,
1

2

)



Problem. Let Π be the plane spanned by vectors
v1 = (1, 1, 0) and v2 = (0, 1, 1).
(i) Find the orthogonal projection of the vector
x = (4, 0,−1) onto the plane Π.
(ii) Find the distance from x to Π.

We have x = p + o, where p ∈ Π and o ⊥ Π.
Then the orthogonal projection of x onto Π is p and
the distance from x to Π is ‖o‖.
We have p = αv1 + βv2 for some α, β ∈ R.
Then o = x − p = x − αv1 − βv2.
{

o · v1 = 0
o · v2 = 0

⇐⇒
{

α(v1 · v1) + β(v2 · v1) = x · v1

α(v1 · v2) + β(v2 · v2) = x · v2



x = (4, 0,−1), v1 = (1, 1, 0), v2 = (0, 1, 1)

{

α(v1 · v1) + β(v2 · v1) = x · v1

α(v1 · v2) + β(v2 · v2) = x · v2

⇐⇒
{

2α + β = 4
α + 2β = −1

⇐⇒
{

α = 3
β = −2

p = 3v1 − 2v2 = (3, 1,−2)

o = x − p = (1,−1, 1)

‖o‖ =
√

3


