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Linear Algebra

Lecture 18:
Orthogonal projection (continued).

Least squares problems.
Normed vector spaces.



Orthogonality

Definition 1. Vectors x, y ∈ R
n are said to be

orthogonal (denoted x ⊥ y) if x · y = 0.

Definition 2. A vector x ∈ R
n is said to be

orthogonal to a nonempty set Y ⊂ R
n (denoted

x ⊥ Y ) if x · y = 0 for any y ∈ Y .

Definition 3. Nonempty sets X , Y ⊂ R
n are said

to be orthogonal (denoted X ⊥ Y ) if x · y = 0
for any x ∈ X and y ∈ Y .



Orthogonal complement

Definition. Let S ⊂ R
n. The orthogonal

complement of S , denoted S⊥, is the set of all
vectors x ∈ R

n that are orthogonal to S .

Theorem 1 (i) S⊥ is a subspace of R
n.

(ii) (S⊥)⊥ = Span(S).

Theorem 2 If V is a subspace of R
n, then

(i) (V⊥)⊥ = V ,
(ii) V ∩ V⊥ = {0},
(iii) dim V + dim V⊥ = n.

Theorem 3 If V is the row space of a matrix, then
V⊥ is the nullspace of the same matrix.
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Orthogonal projection

Theorem 1 Let V be a subspace of R
n. Then

any vector x ∈ R
n is uniquely represented as

x = p + o, where p ∈ V and o ∈ V⊥.

In the above expansion, p is called the orthogonal
projection of the vector x onto the subspace V .

Theorem 2 ‖x − v‖ > ‖x − p‖ for any v 6= p in V .

Thus ‖o‖ = ‖x − p‖ = min
v∈V

‖x − v‖ is the

distance from the vector x to the subspace V .



V

V ⊥

o

p

x



Problem. Let Π be the plane spanned by vectors
v1 = (1, 1, 0) and v2 = (0, 1, 1).
(i) Find the orthogonal projection of the vector
x = (4, 0,−1) onto the plane Π.
(ii) Find the distance from x to Π.

We have x = p + o, where p ∈ Π and o ⊥ Π.
Then the orthogonal projection of x onto Π is p and
the distance from x to Π is ‖o‖.
We have p = αv1 + βv2 for some α, β ∈ R.
Then o = x − p = x − αv1 − βv2.
{

o · v1 = 0
o · v2 = 0

⇐⇒
{

α(v1 · v1) + β(v2 · v1) = x · v1

α(v1 · v2) + β(v2 · v2) = x · v2



x = (4, 0,−1), v1 = (1, 1, 0), v2 = (0, 1, 1)

{

α(v1 · v1) + β(v2 · v1) = x · v1

α(v1 · v2) + β(v2 · v2) = x · v2

⇐⇒
{

2α + β = 4
α + 2β = −1

⇐⇒
{

α = 3
β = −2

p = 3v1 − 2v2 = (3, 1,−2)

o = x − p = (1,−1, 1)

‖o‖ =
√

3



Overdetermined system of linear equations:






x + 2y = 3
3x + 2y = 5
x + y = 2.09

⇐⇒







x + 2y = 3
−4y = −4
−y = −0.91

No solution: inconsistent system

Assume that a solution (x0, y0) does exist but the
system is not quite accurate, namely, there may be
some errors in the right-hand sides.

Problem. Find a good approximation of (x0, y0).

One approach is the least squares fit. Namely, we
look for a pair (x , y) that minimizes the sum
(x + 2y − 3)2 + (3x + 2y − 5)2 + (x + y − 2.09)2.



Least squares solution

System of linear equations:














a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · · · · · · ·
am1x1 + am2x2 + · · · + amnxn = bm

⇐⇒ Ax = b

For any x ∈ R
n define a residual r(x) = b − Ax.

The least squares solution x to the system is the
one that minimizes ‖r(x)‖ (or, equivalently, ‖r(x)‖2).

‖r(x)‖2 =
m

∑

i=1

(ai1x1 + ai2x2 + · · · + ainxn − bi)
2



Let A be an m×n matrix and let b ∈ R
m.

Theorem A vector x̂ is a least squares solution of
the system Ax = b if and only if it is a solution of

the associated normal system ATAx = ATb.

Proof: Ax is an arbitrary vector in R(A), the column space of
A. Hence the length of r(x) = b− Ax is minimal if Ax is the
orthogonal projection of b onto R(A). That is, if r(x) is
orthogonal to R(A).

We know that R(A)⊥ = N(AT ), the nullspace of the
transpose matrix. Thus x̂ is a least squares solution if and
only if

AT r(x̂) = 0 ⇐⇒ AT (b − Ax̂) = 0 ⇐⇒ ATAx̂ = ATb.



Problem. Find the least squares solution to






x + 2y = 3
3x + 2y = 5
x + y = 2.09
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(

20.09
18.09

)

⇐⇒
{

x = 1
y = 1.01



Problem. Find the constant function that is the
least square fit to the following data

x 0 1 2 3

f (x) 1 0 1 2

f (x) = c =⇒















c = 1
c = 0
c = 1
c = 2

=⇒









1
1
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(1, 1, 1, 1)
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(c) = (1, 1, 1, 1)









1
0
1
2









c = 1

4
(1 + 0 + 1 + 2) = 1 (mean arithmetic value)



Problem. Find the linear polynomial that is the
least square fit to the following data

x 0 1 2 3

f (x) 1 0 1 2

f (x) = c1 + c2x =⇒















c1 = 1
c1 + c2 = 0
c1 + 2c2 = 1
c1 + 3c2 = 2

=⇒









1 0
1 1
1 2
1 3
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=
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(

4 6
6 14

) (

c1

c2

)

=

(

4
8

)

⇐⇒
{

c1 = 0.4
c2 = 0.4





Norm

The notion of norm generalizes the notion of length
of a vector in R

n.

Definition. Let V be a vector space. A function
α : V → R is called a norm on V if it has the
following properties:

(i) α(x) ≥ 0, α(x) = 0 only for x = 0 (positivity)
(ii) α(rx) = |r |α(x) for all r ∈ R (homogeneity)
(iii) α(x + y) ≤ α(x) + α(y) (triangle inequality)

Notation. The norm of a vector x ∈ V is usually
denoted ‖x‖. Different norms on V are
distinguished by subscripts, e.g., ‖x‖1 and ‖x‖2.



Examples. V = R
n, x = (x1, x2, . . . , xn) ∈ R

n.

• ‖x‖∞ = max(|x1|, |x2|, . . . , |xn|).
Positivity and homogeneity are obvious.
The triangle inequality:

|xi + yi | ≤ |xi | + |yi | ≤ maxj |xj | + maxj |yj |
=⇒ maxj |xj + yj | ≤ maxj |xj | + maxj |yj |

• ‖x‖1 = |x1| + |x2| + · · · + |xn|.
Positivity and homogeneity are obvious.
The triangle inequality: |xi + yi | ≤ |xi | + |yi |

=⇒ ∑

j |xj + yj | ≤
∑

j |xj | +
∑

j |yj |



Examples. V = R
n, x = (x1, x2, . . . , xn) ∈ R

n.

• ‖x‖p =
(

|x1|p + |x2|p + · · · + |xn|p
)1/p

, p > 0.

Theorem ‖x‖p is a norm on R
n for any p ≥ 1.

Remark. ‖x‖2 = Euclidean length of x.

Definition. A normed vector space is a vector
space endowed with a norm.

The norm defines a distance function on the normed
vector space: dist(x, y) = ‖x − y‖.
Then we say that a sequence x1, x2, . . . converges
to a vector x if dist(x, xn) → 0 as n → ∞.
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Examples. V = C [a, b], f : [a, b] → R.

• ‖f ‖∞ = max
a≤x≤b

|f (x)|.

• ‖f ‖1 =

∫ b

a

|f (x)| dx .

• ‖f ‖p =

(∫ b

a

|f (x)|p dx

)1/p

, p > 0.

Theorem ‖f ‖p is a norm on C [a, b] for any p ≥ 1.


