
MATH 304

Linear Algebra

Lecture 24:
Complexification.

Orthogonal matrices.
Rotations in space.



Complex numbers

C: complex numbers.

Complex number: z = x + iy ,

where x , y ∈ R and i 2 = −1.

i =
√
−1: imaginary unit

Alternative notation: z = x + yi .

x = real part of z ,
iy = imaginary part of z

y = 0 =⇒ z = x (real number)

x = 0 =⇒ z = iy (purely imaginary number)



Geometric representation

Any complex number z = x + iy is represented by
the vector/point (x , y) ∈ R2.
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x = r cosφ, y = r sinφ
=⇒ z = r(cosφ + i sin φ) = re iφ.



Fundamental Theorem of Algebra
Any polynomial of degree n ≥ 1, with complex
coefficients, has exactly n roots (counting with

multiplicities).

Equivalently, if

p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0,

where ai ∈ C and an 6= 0, then there exist complex
numbers z1, z2, . . . , zn such that

p(z) = an(z − z1)(z − z2) . . . (z − zn).



Complex eigenvalues/eigenvectors

Example. A =

(

0 −1

1 0

)

. det(A − λI ) = λ2 + 1.

Characteristic roots: λ1 = i and λ2 = −i .
Associated eigenvectors: v1 = (1,−i) and v2 = (1, i).
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v1, v2 is a basis of eigenvectors. In which space?



Complexification

Instead of the real vector space R2, we consider a

complex vector space C
2 (all complex numbers are

admissible as scalars).

The linear operator f : R2 → R2, f (x) = Ax is

replaced by the complexified linear operator
F : C2 → C2, F (x) = Ax.

The vectors v1 = (1,−i) and v2 = (1, i) form a
basis for C2.



Dot product of complex vectors

Dot product of real vectors
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn:

x · y = x1y1 + x2y2 + · · · + xnyn.

Dot product of complex vectors
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Cn:

x · y = x1y1 + x2y2 + · · · + xnyn.

If z = r + it (t, s ∈ R) then z = r − it,
zz = r 2 + t2 = |z |2.
Hence x · x = |x1|2 + |x2|2 + · · · + |xn|2 ≥ 0.
Also, x · x = 0 if and only if x = 0.

The norm is defined by ‖x‖ =
√

x · x.



Normal matrices

Definition. An n×n matrix A is called

• symmetric if AT = A;
• orthogonal if AAT = ATA = I , i.e., AT = A−1;

• normal if AAT = ATA.

Theorem Let A be an n×n matrix with real
entries. Then
(a) A is normal ⇐⇒ there exists an orthonormal

basis for Cn consisting of eigenvectors of A;
(b) A is symmetric ⇐⇒ there exists an orthonormal

basis for R
n consisting of eigenvectors of A.



Example. A =





1 0 1
0 3 0

1 0 1



.

• A is symmetric.

• A has three eigenvalues: 0, 2, and 3.
• Associated eigenvectors are v1 = (−1, 0, 1),

v2 = (1, 0, 1), and v3 = (0, 1, 0), respectively.

• Vectors 1√
2
v1,

1√
2
v2, v3 form an orthonormal

basis for R
3.



Theorem Suppose A is a normal matrix. Then for
any x ∈ Cn and λ ∈ C one has

Ax = λx ⇐⇒ ATx = λx.

Thus any normal matrix A shares with AT all real
eigenvalues and the corresponding eigenvectors.

Also, Ax = λx ⇐⇒ Ax = λ x for any matrix A

with real entries.

Corollary All eigenvalues λ of a symmetric matrix

are real (λ = λ). All eigenvalues λ of an
orthogonal matrix satisfy λ = λ−1 ⇐⇒ |λ| = 1.



Example. Aφ =

(

cos φ − sinφ
sin φ cosφ

)

.

• AφAψ = Aφ+ψ

• A−1

φ = A−φ = AT
φ

• Aφ is orthogonal

• det(Aφ − λI ) = (cosφ − λ)2 + sin2 φ.

• Eigenvalues: λ1 = cos φ + i sinφ = e iφ,

λ2 = cosφ − i sinφ = e−iφ.

• Associated eigenvectors: v1 = (1,−i),
v2 = (1, i).

• Vectors 1√
2
v1 and 1√

2
v2 form an orthonormal

basis for C
2.



Consider a linear operator L : Rn → Rn, L(x) = Ax,

where A is an n×n orthogonal matrix.

Theorem There exists an orthonormal basis for Rn

such that the matrix of L relative to this basis has a
diagonal block structure











D±1 O . . . O

O R1 . . . O
...

... . . . ...

O O . . . Rk











,

where D±1 is a diagonal matrix whose diagonal
entries are equal to 1 or −1, and

Rj =

(

cosφj − sinφj

sinφj cosφj

)

, φj ∈ R.



Why are orthogonal matrices called so?

Theorem Given an n×n matrix A, the following

conditions are equivalent:
(i) A is orthogonal: AT = A−1;
(ii) columns of A form an orthonormal basis for Rn;

(iii) rows of A form an orthonormal basis for R
n.

Proof: Entries of the matrix ATA are dot products of
columns of A. Entries of AAT are dot products of rows of A.

Thus an orthogonal matrix is the transition matrix
from one orthonormal basis to another.



Consider a linear operator L : R
n → R

n, L(x) = Ax,
where A is an n×n matrix.

Theorem The following conditions are equivalent:
(i) |L(x)| = |x| for all x ∈ Rn;

(ii) L(x) · L(y) = x · y for all x, y ∈ R
n;

(iii) the matrix A is orthogonal.

Definition. A transformation f : Rn → Rn is called

an isometry if it preserves distances between
points: |f (x) − f (y)| = |x − y|.
Theorem Any isometry f : Rn → Rn can be

represented as f (x) = Ax + x0, where x0 ∈ R
n and

A is an orthogonal matrix.



Classification of 2×2 orthogonal matrices:

(

cos φ − sinφ
sin φ cosφ

) (

−1 0
0 1

)

rotation reflection
about the origin in a line

Determinant: 1 −1

Eigenvalues: e iφ and e−iφ −1 and 1



Classification of 3×3 orthogonal matrices:

A =





1 0 0

0 cosφ − sinφ
0 sin φ cos φ



, B =





−1 0 0

0 1 0
0 0 1



,

C =





−1 0 0
0 cosφ − sin φ

0 sin φ cos φ



.

A = rotation about a line; B = reflection in a
plane; C = rotation about a line combined with

reflection in the orthogonal plane.

det A = 1, det B = det C = −1.

A has eigenvalues 1, e iφ, e−iφ. B has eigenvalues

−1, 1, 1. C has eigenvalues −1, e iφ, e−iφ.



Rotations in space

If the axis of rotation is oriented, we can say about
clockwise or counterclockwise rotations (with

respect to the view from the positive semi-axis).



Clockwise rotations about coordinate axes





cos θ sin θ 0
− sin θ cos θ 0

0 0 1









cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ









1 0 0
0 cos θ sin θ
0 − sin θ cos θ







Problem. Find the matrix of the rotation by 90o

about the line spanned by the vector c = (1, 2, 2).
The rotation is assumed to be counterclockwise

when looking from the tip of c.

B =





0 −1 0

1 0 0
0 0 1



 is the matrix of (counterclockwise)
rotation by 90o about the z-axis.

We need to find an orthonormal basis v1, v2, v3 such
that v3 has the same direction as c. Also, the basis

v1, v2, v3 should obey the same hand rule as the
standard basis. Then B is the matrix of the given
rotation relative to the basis v1, v2, v3.



Let U denote the transition matrix from the basis

v1, v2, v3 to the standard basis (columns of U are
vectors v1, v2, v3). Then the desired matrix is

A = UBU−1.

Since v1, v2, v3 is going to be an orthonormal basis,
the matrix U will be orthogonal. Then U−1 = UT

and A = UBUT .

Remark. The basis v1, v2, v3 obeys the same hand
rule as the standard basis if and only if det U > 0.



Hint. Vectors a = (−2,−1, 2), b = (2,−2, 1),
and c = (1, 2, 2) are orthogonal.

We have |a| = |b| = |c| = 3, hence v1 = 1

3
a,

v2 = 1

3
b, v3 = 1

3
c is an orthonormal basis.

Transition matrix: U = 1

3





−2 2 1
−1 −2 2

2 1 2



.

det U = 1

27

∣

∣

∣

∣

∣

∣

−2 2 1

−1 −2 2
2 1 2

∣

∣

∣

∣

∣

∣

= 1

27
· 27 = 1.

(In the case det U = −1, we should interchange
vectors v1 and v2.)



A = UBUT

= 1

3





−2 2 1

−1 −2 2
2 1 2









0 −1 0

1 0 0
0 0 1



 · 1

3





−2 −1 2

2 −2 1
1 2 2





= 1

9





2 2 1
−2 1 2

1 −2 2









−2 −1 2
2 −2 1

1 2 2





= 1

9





1 −4 8

8 4 1
−4 7 4



.



U = 1

3





−2 2 1

−1 −2 2
2 1 2



 is an orthogonal matrix.

det U = 1 =⇒ U is a rotation matrix.

Problem. (a) Find the axis of the rotation.
(b) Find the angle of the rotation.

The axis is the set of points x ∈ Rn such that

Ux = x ⇐⇒ (U − I )x = 0. To find the axis, we
apply row reduction to the matrix 3(U − I ):

3U − 3I =





−5 2 1
−1 −5 2

2 1 −1



 →





−3 3 0
−1 −5 2

2 1 −1







→





1 −1 0

−1 −5 2
2 1 −1



 →





1 −1 0

0 −6 2
2 1 −1



 →





1 −1 0
0 −6 2

0 3 −1



 →





1 −1 0
0 0 0

0 3 −1



 →





1 −1 0
0 3 −1

0 0 0





→





1 −1 0

0 1 −1/3
0 0 0



 →





1 0 −1/3

0 1 −1/3
0 0 0





Thus Ux = x ⇐⇒
{

x − z/3 = 0
y − z/3 = 0

The general solution is x = y = t/3, z = t, t ∈ R.
=⇒ d = (1, 1, 3) is the direction of the axis.



U = 1

3





−2 2 1

−1 −2 2
2 1 2





Let φ be the angle of rotation. Then the

eigenvalues of U are 1, e iφ, and e−iφ. Therefore

det(U − λI ) = (1 − λ)(e iφ − λ)(e−iφ − λ).

Besides, det(U − λI ) = −λ3 + c1λ
2 + c2λ + c3,

where c1 = Tr U (the sum of diagonal entries).
It follows that

TrU = 1 + e iφ + e−iφ = 1 + 2 cosφ.

Tr U = −2/3 =⇒ cosφ = −5/6 =⇒ φ ≈ 146.44o


