MATH 304 Linear Algebra

Lecture 24: Complexification. Orthogonal matrices. Rotations in space.

Complex numbers

 $\mathbb{C} \colon$ complex numbers.

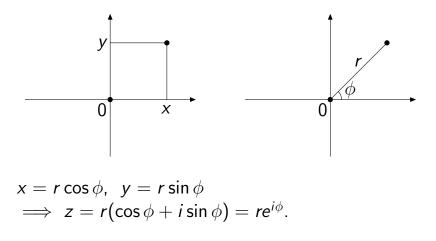
Complex number:
$$z = x + iy$$
,
where $x, y \in \mathbb{R}$ and $i^2 = -1$.
 $i = \sqrt{-1}$: imaginary unit

Alternative notation: z = x + yi.

$$\begin{array}{l} x = \mbox{real part of } z, \\ iy = \mbox{imaginary part of } z \\ y = 0 \implies z = x \mbox{ (real number)} \\ x = 0 \implies z = iy \mbox{ (purely imaginary number)} \end{array}$$

Geometric representation

Any complex number z = x + iy is represented by the vector/point $(x, y) \in \mathbb{R}^2$.



Fundamental Theorem of Algebra

Any polynomial of degree $n \ge 1$, with complex coefficients, has exactly *n* roots (counting with multiplicities).

Equivalently, if $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$, where $a_i \in \mathbb{C}$ and $a_n \neq 0$, then there exist complex numbers z_1, z_2, \dots, z_n such that $p(z) = a_n (z - z_1)(z - z_2) \dots (z - z_n)$.

Complex eigenvalues/eigenvectors

Example.
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
. $det(A - \lambda I) = \lambda^2 + 1$.

Characteristic roots: $\lambda_1 = i$ and $\lambda_2 = -i$. Associated eigenvectors: $\mathbf{v}_1 = (1, -i)$ and $\mathbf{v}_2 = (1, i)$.

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -i \end{pmatrix} = \begin{pmatrix} i \\ 1 \end{pmatrix} = i \begin{pmatrix} 1 \\ -i \end{pmatrix},$$
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix} = \begin{pmatrix} -i \\ 1 \end{pmatrix} = -i \begin{pmatrix} 1 \\ i \end{pmatrix}.$$

 \mathbf{v}_1 , \mathbf{v}_2 is a basis of eigenvectors. In which space?

Complexification

Instead of the real vector space \mathbb{R}^2 , we consider a complex vector space \mathbb{C}^2 (all complex numbers are admissible as scalars).

The linear operator $f : \mathbb{R}^2 \to \mathbb{R}^2$, $f(\mathbf{x}) = A\mathbf{x}$ is replaced by the complexified linear operator $F : \mathbb{C}^2 \to \mathbb{C}^2$, $F(\mathbf{x}) = A\mathbf{x}$.

The vectors $\mathbf{v}_1 = (1, -i)$ and $\mathbf{v}_2 = (1, i)$ form a basis for \mathbb{C}^2 .

Dot product of complex vectors

Dot product of real vectors

$$\mathbf{x} = (x_1, \dots, x_n), \ \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$$
:
 $\mathbf{x} \cdot \mathbf{y} = x_1y_1 + x_2y_2 + \dots + x_ny_n$.

Dot product of complex vectors $\mathbf{x} = (x_1, \ldots, x_n), \ \mathbf{y} = (y_1, \ldots, y_n) \in \mathbb{C}^n$: $\mathbf{x} \cdot \mathbf{v} = x_1 \overline{v_1} + x_2 \overline{v_2} + \cdots + x_n \overline{v_n}$ If z = r + it $(t, s \in \mathbb{R})$ then $\overline{z} = r - it$, $z\overline{z} = r^2 + t^2 = |z|^2.$ Hence $\mathbf{x} \cdot \mathbf{x} = |x_1|^2 + |x_2|^2 + \dots + |x_n|^2 > 0$. Also, $\mathbf{x} \cdot \mathbf{x} = 0$ if and only if $\mathbf{x} = \mathbf{0}$. The norm is defined by $\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$.

Normal matrices

Definition. An $n \times n$ matrix A is called

- symmetric if $A^T = A$;
- orthogonal if $AA^T = A^T A = I$, i.e., $A^T = A^{-1}$;
- normal if $AA^T = A^T A$.

Theorem Let A be an $n \times n$ matrix with real entries. Then

(a) A is normal \iff there exists an orthonormal basis for \mathbb{C}^n consisting of eigenvectors of A; (b) A is symmetric \iff there exists an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A.

Example.
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
.

- A is symmetric.
- A has three eigenvalues: 0, 2, and 3.
- Associated eigenvectors are $\mathbf{v}_1 = (-1, 0, 1)$,
- $\mathbf{v}_2=(1,0,1)$, and $\mathbf{v}_3=(0,1,0)$, respectively.
- Vectors $\frac{1}{\sqrt{2}}\mathbf{v}_1, \frac{1}{\sqrt{2}}\mathbf{v}_2, \mathbf{v}_3$ form an orthonormal basis for \mathbb{R}^3 .

Theorem Suppose A is a normal matrix. Then for any $\mathbf{x} \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$ one has

$$A\mathbf{x} = \lambda \mathbf{x} \iff A^T \mathbf{x} = \overline{\lambda} \mathbf{x}.$$

Thus any normal matrix A shares with A^T all real eigenvalues and the corresponding eigenvectors. Also, $A\mathbf{x} = \lambda \mathbf{x} \iff A\overline{\mathbf{x}} = \overline{\lambda} \overline{\mathbf{x}}$ for any matrix A with real entries.

Corollary All eigenvalues λ of a symmetric matrix are real $(\overline{\lambda} = \lambda)$. All eigenvalues λ of an orthogonal matrix satisfy $\overline{\lambda} = \lambda^{-1} \iff |\lambda| = 1$.

Example.
$$A_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$
.

•
$$A_{\phi}A_{\psi} = A_{\phi+\psi}$$

•
$$A_{\phi}^{-1} = A_{-\phi} = A_{\phi}^T$$

• A_{ϕ} is orthogonal

•
$$\det(A_{\phi} - \lambda I) = (\cos \phi - \lambda)^2 + \sin^2 \phi.$$

• Eigenvalues:
$$\lambda_1 = \cos \phi + i \sin \phi = e^{i\phi}$$
,
 $\lambda_2 = \cos \phi - i \sin \phi = e^{-i\phi}$.

• Associated eigenvectors: $\mathbf{v}_1 = (1, -i)$, $\mathbf{v}_2 = (1, i)$.

• Vectors $\frac{1}{\sqrt{2}}\mathbf{v}_1$ and $\frac{1}{\sqrt{2}}\mathbf{v}_2$ form an orthonormal basis for \mathbb{C}^2 .

Consider a linear operator $L : \mathbb{R}^n \to \mathbb{R}^n$, $L(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ orthogonal matrix.

Theorem There exists an orthonormal basis for \mathbb{R}^n such that the matrix of L relative to this basis has a diagonal block structure

$$\begin{pmatrix} D_{\pm 1} & O & \dots & O \\ O & R_1 & \dots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \dots & R_k \end{pmatrix},$$

where $D_{\pm 1}$ is a diagonal matrix whose diagonal entries are equal to 1 or -1, and

$$R_j = egin{pmatrix} \cos \phi_j & -\sin \phi_j \ \sin \phi_j & \cos \phi_j \end{pmatrix}, \ \phi_j \in \mathbb{R}.$$

Why are orthogonal matrices called so?

Theorem Given an $n \times n$ matrix A, the following conditions are equivalent:

(i) A is orthogonal: $A^T = A^{-1}$;

(ii) columns of A form an orthonormal basis for \mathbb{R}^n ; (iii) rows of A form an orthonormal basis for \mathbb{R}^n .

Proof: Entries of the matrix $A^T A$ are dot products of columns of A. Entries of AA^T are dot products of rows of A.

Thus an orthogonal matrix is the transition matrix from one orthonormal basis to another.

Consider a linear operator $L : \mathbb{R}^n \to \mathbb{R}^n$, $L(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ matrix.

Theorem The following conditions are equivalent: (i) $|L(\mathbf{x})| = |\mathbf{x}|$ for all $\mathbf{x} \in \mathbb{R}^n$; (ii) $L(\mathbf{x}) \cdot L(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$; (iii) the matrix A is orthogonal.

Definition. A transformation $f : \mathbb{R}^n \to \mathbb{R}^n$ is called an **isometry** if it preserves distances between points: $|f(\mathbf{x}) - f(\mathbf{y})| = |\mathbf{x} - \mathbf{y}|$.

Theorem Any isometry $f : \mathbb{R}^n \to \mathbb{R}^n$ can be represented as $f(\mathbf{x}) = A\mathbf{x} + \mathbf{x}_0$, where $\mathbf{x}_0 \in \mathbb{R}^n$ and A is an orthogonal matrix.

Classification of 2×2 orthogonal matrices:

$$\begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \qquad \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Eigenvalues: $e^{i\phi}$ and $e^{-i\phi}$ -1 and 1

Classification of 3×3 orthogonal matrices:

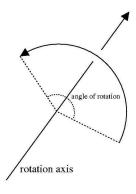
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
$$C = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{pmatrix}.$$

A = rotation about a line; B = reflection in a plane; C = rotation about a line combined with reflection in the orthogonal plane.

 $\det A = 1, \ \det B = \det C = -1.$

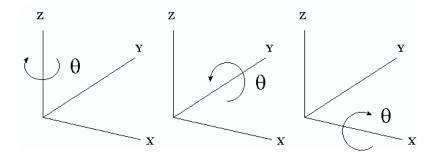
A has eigenvalues 1, $e^{i\phi}$, $e^{-i\phi}$. B has eigenvalues -1, 1, 1. C has eigenvalues -1, $e^{i\phi}$, $e^{-i\phi}$.

Rotations in space



If the axis of rotation is oriented, we can say about *clockwise* or *counterclockwise* rotations (with respect to the view from the positive semi-axis).

Clockwise rotations about coordinate axes



$$\begin{pmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & -\sin\theta\\ 0 & 1 & 0\\ \sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta & \sin\theta\\ 0 & -\sin\theta & \cos\theta \end{pmatrix}$$

Problem. Find the matrix of the rotation by 90° about the line spanned by the vector $\mathbf{c} = (1, 2, 2)$. The rotation is assumed to be counterclockwise when looking from the tip of \mathbf{c} .

$$B = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 is the matrix of (counterclockwise) rotation by 90° about the *z*-axis.

We need to find an orthonormal basis \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 such that \mathbf{v}_3 has the same direction as \mathbf{c} . Also, the basis \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 should obey the same hand rule as the standard basis. Then *B* is the matrix of the given rotation relative to the basis \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 .

Let U denote the transition matrix from the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to the standard basis (columns of U are vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$). Then the desired matrix is $A = UBU^{-1}$.

Since $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is going to be an orthonormal basis, the matrix U will be orthogonal. Then $U^{-1} = U^T$ and $A = UBU^T$.

Remark. The basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ obeys the same hand rule as the standard basis if and only if det U > 0.

Hint. Vectors $\mathbf{a} = (-2, -1, 2)$, $\mathbf{b} = (2, -2, 1)$, and $\mathbf{c} = (1, 2, 2)$ are orthogonal. We have $|\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}| = 3$, hence $\mathbf{v}_1 = \frac{1}{3}\mathbf{a}$, $\mathbf{v}_2 = \frac{1}{3}\mathbf{b}$, $\mathbf{v}_3 = \frac{1}{3}\mathbf{c}$ is an orthonormal basis. Transition matrix: $U = \frac{1}{3} \begin{pmatrix} -2 & 2 & 1 \\ -1 & -2 & 2 \\ 2 & 1 & 2 \end{pmatrix}$. det $U = \frac{1}{27} \begin{vmatrix} -2 & 2 & 1 \\ -1 & -2 & 2 \\ 2 & 1 & 2 \end{vmatrix} = \frac{1}{27} \cdot 27 = 1.$

(In the case det U = -1, we should interchange vectors \mathbf{v}_1 and \mathbf{v}_2 .)

$$A = UBU^{T}$$

$$= \frac{1}{3} \begin{pmatrix} -2 & 2 & 1 \\ -1 & -2 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \frac{1}{3} \begin{pmatrix} -2 & -1 & 2 \\ 2 & -2 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$

$$= \frac{1}{9} \begin{pmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{pmatrix} \begin{pmatrix} -2 & -1 & 2 \\ 2 & -2 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$

$$= \frac{1}{9} \begin{pmatrix} 1 & -4 & 8 \\ 8 & 4 & 1 \\ -4 & 7 & 4 \end{pmatrix}.$$

$$U = \frac{1}{3} \begin{pmatrix} -2 & 2 & 1 \\ -1 & -2 & 2 \\ 2 & 1 & 2 \end{pmatrix}$$
 is an orthogonal matrix.
det $U = 1 \implies U$ is a rotation matrix.

Problem. (a) Find the axis of the rotation.(b) Find the angle of the rotation.

The axis is the set of points $\mathbf{x} \in \mathbb{R}^n$ such that $U\mathbf{x} = \mathbf{x} \iff (U - I)\mathbf{x} = \mathbf{0}$. To find the axis, we apply row reduction to the matrix 3(U - I):

$$3U - 3I = \begin{pmatrix} -5 & 2 & 1 \\ -1 & -5 & 2 \\ 2 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & 3 & 0 \\ -1 & -5 & 2 \\ 2 & 1 & -1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -1 & 0 \\ -1 & -5 & 2 \\ 2 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & -6 & 2 \\ 2 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 3 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & -1/3 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & -1/3 \\ 0 & 0 & 0 \end{pmatrix}$$

Thus $U\mathbf{x} = \mathbf{x} \iff \begin{cases} x - z/3 = 0 \\ y - z/3 = 0 \end{cases}$

The general solution is x = y = t/3, z = t, $t \in \mathbb{R}$. \implies **d** = (1, 1, 3) is the direction of the axis.

$$U = \frac{1}{3} \begin{pmatrix} -2 & 2 & 1\\ -1 & -2 & 2\\ 2 & 1 & 2 \end{pmatrix}$$

Let ϕ be the angle of rotation. Then the eigenvalues of U are 1, $e^{i\phi}$, and $e^{-i\phi}$. Therefore $\det(U - \lambda I) = (1 - \lambda)(e^{i\phi} - \lambda)(e^{-i\phi} - \lambda)$. Besides, $\det(U - \lambda I) = -\lambda^3 + c_1\lambda^2 + c_2\lambda + c_3$, where $c_1 = \operatorname{Tr} U$ (the sum of diagonal entries). It follows that

$$\operatorname{Tr} U = 1 + e^{i\phi} + e^{-i\phi} = 1 + 2\cos\phi.$$
$$\operatorname{Tr} U = -2/3 \implies \cos\phi = -5/6 \implies \phi \approx 146.44^{\circ}$$