
MATH 304

Linear Algebra

Lecture 4:
Applications of systems of linear equations.



System with a parameter






y + 3z = 0
x + y − 2z = 0
x + 2y + az = 0

(a ∈ R)

The system is homogeneous (all right-hand sides
are zeros). Therefore it is consistent
(x = y = z = 0 is a solution).

Augmented matrix:





0 1 3 0
1 1 −2 0
1 2 a 0





Since the 1st row cannot serve as a pivotal one, we
interchange it with the 2nd row:







0 1 3 0
1 1 −2 0
1 2 a 0



 →





1 1 −2 0
0 1 3 0
1 2 a 0





Now we can start the elimination.
First subtract the 1st row from the 3rd row:




1 1 −2 0
0 1 3 0
1 2 a 0



 →





1 1 −2 0
0 1 3 0
0 1 a + 2 0





The 2nd row is our new pivotal row.
Subtract the 2nd row from the 3rd row:




1 1 −2 0
0 1 3 0
0 1 a + 2 0



 →





1 1 −2 0
0 1 3 0
0 0 a − 1 0







At this point row reduction splits into two cases.

Case 1: a 6= 1. In this case, multiply the 3rd row
by (a − 1)−1:




1 1 −2 0
0 1 3 0
0 0 a − 1 0



 →





1 1 −2 0

0 1 3 0

0 0 1 0





The matrix is converted into row echelon form.

We proceed towards reduced row echelon form.

Subtract 3 times the 3rd row from the 2nd row:




1 1 −2 0
0 1 3 0
0 0 1 0



 →





1 1 −2 0
0 1 0 0
0 0 1 0







Add 2 times the 3rd row to the 1st row:




1 1 −2 0
0 1 0 0
0 0 1 0



 →





1 1 0 0
0 1 0 0
0 0 1 0





Finally, subtract the 2nd row from the 1st row:




1 1 0 0
0 1 0 0
0 0 1 0



 →





1 0 0 0

0 1 0 0

0 0 1 0





Thus x = y = z = 0 is the only solution.



Case 2: a = 1. In this case, the matrix is already
in row echelon form:




1 1 −2 0

0 1 3 0
0 0 0 0





To get reduced row echelon form, subtract the 2nd
row from the 1st row:




1 1 −2 0
0 1 3 0
0 0 0 0



 →





1 0 −5 0

0 1 3 0
0 0 0 0





z is a free variable.
{

x − 5z = 0
y + 3z = 0

⇐⇒
{

x = 5z
y = −3z



System of linear equations:






y + 3z = 0
x + y − 2z = 0
x + 2y + az = 0

Solution: If a 6= 1 then (x , y , z) = (0, 0, 0);
if a = 1 then (x , y , z) = (5t,−3t, t), t ∈ R.



Applications of systems of linear equations

Problem 1. Find the point of intersection of the
lines x − y = −2 and 2x + 3y = 6 in R

2.
{

x − y = −2
2x + 3y = 6

Problem 2. Find the point of intersection of the
planes x − y = 2, 2x − y − z = 3, and
x + y + z = 6 in R

3.






x − y = 2
2x − y − z = 3
x + y + z = 6



Method of undetermined coefficients often involves
solving systems of linear equations.

Problem 3. Find a quadratic polynomial p(x)
such that p(1) = 4, p(2) = 3, and p(3) = 4.

Suppose that p(x) = ax2 + bx + c . Then
p(1) = a + b + c , p(2) = 4a + 2b + c ,
p(3) = 9a + 3b + c .







a + b + c = 4
4a + 2b + c = 3
9a + 3b + c = 4



Problem 4. Evaluate

∫

1

0

x(x − 3)

(x − 1)2(x + 2)
dx .

To evaluate the integral, we need to decompose the rational

function R(x) = x(x−3)
(x−1)2(x+2)

into the sum of simple fractions:

R(x) =
a

x − 1
+

b

(x − 1)2
+

c

x + 2

=
a(x − 1)(x + 2) + b(x + 2) + c(x − 1)2

(x − 1)2(x + 2)

=
(a + c)x2 + (a + b − 2c)x + (−2a + 2b + c)

(x − 1)2(x + 2)
.







a + c = 1
a + b − 2c = −3
−2a + 2b + c = 0



Traffic flow

450 400

610 640

520 600

Problem. Determine the amount of traffic
between each of the four intersections.
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Traffic flow
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At each intersection, the incoming traffic has to
match the outgoing traffic.



Intersection A: x4 + 610 = x1 + 450
Intersection B : x1 + 400 = x2 + 640
Intersection C : x2 + 600 = x3

Intersection D: x3 = x4 + 520














x4 + 610 = x1 + 450
x1 + 400 = x2 + 640
x2 + 600 = x3

x3 = x4 + 520

⇐⇒















−x1 + x4 = −160
x1 − x2 = 240
x2 − x3 = −600
x3 − x4 = 520



Electrical network

3 ohms 2 ohms

4 ohms

1 ohm

9 volts

4 volts

Problem. Determine the amount of current in
each branch of the network.
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Electrical network

3 ohms 2 ohms
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Kirchhof’s law #1 (junction rule): at every
node the sum of the incoming currents equals the
sum of the outgoing currents.



Electrical network

3 ohms 2 ohms

4 ohms

1 ohm

9 volts

4 volts

i1

i2

i3

A B

Node A: i1 = i2 + i3
Node B : i2 + i3 = i1



Electrical network

Kirchhof’s law #2 (loop rule): around every
loop the algebraic sum of all voltages is zero.

Ohm’s law: for every resistor the voltage drop E ,
the current i , and the resistance R satisfy E = iR .

Top loop: 9 − i2 − 4i1 = 0
Bottom loop: 4 − 2i3 + i2 − 3i3 = 0

Big loop: 4 − 2i3 − 4i1 + 9 − 3i3 = 0

Remark. The 3rd equation is the sum of the first
two equations.









i1 = i2 + i3
9 − i2 − 4i1 = 0
4 − 2i3 + i2 − 3i3 = 0

⇐⇒







i1 − i2 − i3 = 0
4i1 + i2 = 9
−i2 + 5i3 = 4



Stress analysis of a truss

Problem. Assume that the leftmost and rightmost
joints are fixed. Find the forces acting on each
member of the truss.



Truss bridge



Let |fk | be the magnitude of the force in the kth
member. fk > 0 if the member is under tension.
fk < 0 if the member is under compression.



Static equilibrium at the joint A:

horizontal projection: − 1√
2
f1 + f4 + 1√

2
f5 = 0

vertical projection: − 1√
2
f1 − f3 − 1√

2
f5 = 0

Static equilibrium at the joint B:

horizontal projection: −f4 + f8 = 0

vertical projection: −f7 = 0

Static equilibrium at the joint C:

horizontal projection: −f8 − 1√
2
f9 + 1√

2
f12 = 0

vertical projection: − 1√
2
f9 − f11 − 1√

2
f12 = 0



Static equilibrium at the joint D:

horizontal projection: −f2 + f6 = 0

vertical projection: f3 − 10 = 0

Static equilibrium at the joint E:

horizontal projection: − 1√
2
f5 − f6 + 1√

2
f9 + f10 = 0

vertical projection: 1√
2
f5 + f7 + 1√

2
f9 − 15 = 0

Static equilibrium at the joint F:

horizontal projection: −f10 + f13 = 0

vertical projection: f11 − 20 = 0
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