MATH 304
 Linear Algebra

Lecture 16:
Basis and dimension.

Basis

Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

Equivalently, a subset $S \subset V$ is a basis for V if any vector $\mathbf{v} \in V$ is uniquely represented as a linear combination

$$
\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}
$$

where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are distinct vectors from S and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.

Remark on uniqueness. Expansions $\mathbf{v}=2 \mathbf{v}_{1}+3 \mathbf{v}_{2}-\mathbf{v}_{3}$ and $\mathbf{v}=2 \mathbf{v}_{1}+3 \mathbf{v}_{2}-\mathbf{v}_{3}+0 \mathbf{v}_{4}$ are considered the same.

Examples. - Standard basis for \mathbb{R}^{n} :
$\mathbf{e}_{1}=(1,0,0, \ldots, 0,0), \mathbf{e}_{2}=(0,1,0, \ldots, 0,0), \ldots$, $\mathbf{e}_{n}=(0,0,0, \ldots, 0,1)$.

- Matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
form a basis for $\mathcal{M}_{2,2}(\mathbb{R})$.
- Polynomials $1, x, x^{2}, \ldots, x^{n-1}$ form a basis for $\mathcal{P}_{n}=\left\{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}: a_{i} \in \mathbb{R}\right\}$.
- The infinite set $\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$ is a basis for \mathcal{P}, the space of all polynomials.

Bases for \mathbb{R}^{n}

Theorem Every basis for the vector space \mathbb{R}^{n} consists of n vectors.

Theorem For any vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$ the following conditions are equivalent:
(i) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for \mathbb{R}^{n};
(ii) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a spanning set for \mathbb{R}^{n};
(iii) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent set.

Dimension

Theorem 1 Any vector space has a basis.
Theorem 2 If a vector space V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The dimension of a vector space V, denoted $\operatorname{dim} V$, is the number of elements in any of its bases.

Examples. • $\operatorname{dim} \mathbb{R}^{n}=n$

- $\mathcal{M}_{2,2}(\mathbb{R}):$ the space of 2×2 matrices $\operatorname{dim} \mathcal{M}_{2,2}(\mathbb{R})=4$
- $\mathcal{M}_{m, n}(\mathbb{R})$: the space of $m \times n$ matrices $\operatorname{dim} \mathcal{M}_{m, n}(\mathbb{R})=m n$
- \mathcal{P}_{n} : polynomials of degree less than n $\operatorname{dim} \mathcal{P}_{n}=n$
- \mathcal{P} : the space of all polynomials $\operatorname{dim} \mathcal{P}=\infty$
- $\{\mathbf{0}\}$: the trivial vector space $\operatorname{dim}\{\mathbf{0}\}=0$

Problem. Find the dimension of the plane $x+2 z=0$ in \mathbb{R}^{3}.

The general solution of the equation $x+2 z=0$ is
$\left\{\begin{array}{l}x=-2 s \\ y=t \\ z=s\end{array}\right.$

$$
(t, s \in \mathbb{R})
$$

That is, $(x, y, z)=(-2 s, t, s)=t(0,1,0)+s(-2,0,1)$. Hence the plane is the span of vectors $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(-2,0,1)$. These vectors are linearly independent as they are not parallel.
Thus $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis so that the dimension of the plane is 2 .

How to find a basis?

Theorem Let S be a subset of a vector space V.
Then the following conditions are equivalent:
(i) S is a linearly independent spanning set for V, i.e., a basis;
(ii) S is a minimal spanning set for V;
(iii) S is a maximal linearly independent subset of V.
"Minimal spanning set" means "remove any element from this set, and it is no longer a spanning set".
"Maximal linearly independent subset" means "add any element of V to this set, and it will become linearly dependent".

Theorem Let V be a vector space. Then
(i) any spanning set for V can be reduced to a minimal spanning set;
(ii) any linearly independent subset of V can be extended to a maximal linearly independent set.

Equivalently, any spanning set contains a basis, while any linearly independent set is contained in a basis.

Corollary A vector space is finite-dimensional if and only if it is spanned by a finite set.

How to find a basis?

Approach 1. Get a spanning set for the vector space, then reduce this set to a basis.

Proposition Let $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be a spanning set for a vector space V. If \mathbf{v}_{0} is a linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is also a spanning set for V.

Indeed, if $\mathbf{v}_{0}=r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}$, then

$$
\begin{gathered}
t_{0} \mathbf{v}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}= \\
=\left(t_{0} r_{1}+t_{1}\right) \mathbf{v}_{1}+\cdots+\left(t_{0} r_{k}+t_{k}\right) \mathbf{v}_{k}
\end{gathered}
$$

How to find a basis?

Approach 2. Build a maximal linearly independent set adding one vector at a time.

If the vector space V is trivial, it has the empty basis.
If $V \neq\{\mathbf{0}\}$, pick any vector $\mathbf{v}_{1} \neq \mathbf{0}$.
If \mathbf{v}_{1} spans V, it is a basis. Otherwise pick any vector $\mathbf{v}_{2} \in V$ that is not in the span of \mathbf{v}_{1}.
If \mathbf{v}_{1} and \mathbf{v}_{2} span V, they constitute a basis.
Otherwise pick any vector $\mathbf{v}_{3} \in V$ that is not in the span of \mathbf{v}_{1} and \mathbf{v}_{2}.
And so on...

Problem. Find a basis for the vector space V spanned by vectors $\mathbf{w}_{1}=(1,1,0), \mathbf{w}_{2}=(0,1,1)$, $\mathbf{w}_{3}=(2,3,1)$, and $\mathbf{w}_{4}=(1,1,1)$.

To pare this spanning set, we need to find a relation of the form $r_{1} \mathbf{w}_{1}+r_{2} \mathbf{w}_{2}+r_{3} \mathbf{w}_{3}+r_{4} \mathbf{w}_{4}=\mathbf{0}$, where $r_{i} \in \mathbb{R}$ are not all equal to zero. Equivalently,

$$
\left(\begin{array}{llll}
1 & 0 & 2 & 1 \\
1 & 1 & 3 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

To solve this system of linear equations for $r_{1}, r_{2}, r_{3}, r_{4}$, we apply row reduction.

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 0 & 2 & 1 \\
1 & 1 & 3 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 0 & 2 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 0 & 2 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \left\{\begin{array}{l}
r_{1}+2 r_{3}=0 \\
r_{2}+r_{3}=0 \\
r_{4}=0
\end{array} \Longleftrightarrow\right. \text { (reduced row echelon form) } \\
& \Longleftrightarrow\left\{\begin{array}{l}
r_{1}=-2 r_{3} \\
r_{2}=-r_{3} \\
r_{4}=0
\end{array}\right.
\end{aligned}
$$

General solution: $\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=(-2 t,-t, t, 0), t \in \mathbb{R}$. Particular solution: $\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=(2,1,-1,0)$.

Problem. Find a basis for the vector space V spanned by vectors $\mathbf{w}_{1}=(1,1,0), \mathbf{w}_{2}=(0,1,1)$,
$\mathbf{w}_{3}=(2,3,1)$, and $\mathbf{w}_{4}=(1,1,1)$.
We have obtained that $2 \mathbf{w}_{1}+\mathbf{w}_{2}-\mathbf{w}_{3}=\mathbf{0}$. Hence any of vectors $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$ can be dropped. For instance, $V=\operatorname{Span}\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{4}\right)$.
Let us check whether vectors $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{4}$ are linearly independent:

$$
\left|\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right|=\left|\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right|=\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|=1 \neq 0
$$

They are!!! It follows that $V=\mathbb{R}^{3}$ and $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{4}\right\}$ is a basis for V.

Vectors $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(-2,0,1)$ are linearly independent.
Problem. Extend the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ to a basis for \mathbb{R}^{3}.
Our task is to find a vector \mathbf{v}_{3} that is not a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}.
Then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ will be a basis for \mathbb{R}^{3}. Hint 1. \mathbf{v}_{1} and \mathbf{v}_{2} span the plane $x+2 z=0$.
The vector $\mathbf{v}_{3}=(1,1,1)$ does not lie in the plane $x+2 z=0$, hence it is not a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}. Thus $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for \mathbb{R}^{3}.

Vectors $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(-2,0,1)$ are linearly independent.
Problem. Extend the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ to a basis for \mathbb{R}^{3}. Our task is to find a vector \mathbf{v}_{3} that is not a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}. Then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ will be a basis for \mathbb{R}^{3}.
Hint 2. At least one of vectors $\mathbf{e}_{1}=(1,0,0)$, $\mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ is a desired one. Let us check that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{e}_{1}\right\}$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{e}_{3}\right\}$ are two bases for \mathbb{R}^{3} :

$$
\left|\begin{array}{rrr}
0 & -2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right|=1 \neq 0, \quad\left|\begin{array}{rrr}
0 & -2 & 0 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right|=2 \neq 0
$$

