MATH 304

Linear Algebra

Lecture 20: Linear transformations.

Range and kernel.

Linear mapping = linear transformation = linear function

Definition. Given vector spaces V_1 and V_2 , a mapping $L: V_1 \to V_2$ is **linear** if $\boxed{ L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}),}$ $\boxed{ L(r\mathbf{x}) = rL(\mathbf{x}) }$

for any $\mathbf{x}, \mathbf{y} \in V_1$ and $r \in \mathbb{R}$.

A linear mapping $\ell: V \to \mathbb{R}$ is called a **linear** functional on V.

If $V_1 = V_2$ (or if both V_1 and V_2 are functional spaces) then a linear mapping $L: V_1 \to V_2$ is called a **linear operator**.

Linear mapping = linear transformation = linear function

Definition. Given vector spaces V_1 and V_2 , a mapping $L: V_1 \to V_2$ is **linear** if $\boxed{L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}),}$ $\boxed{L(r\mathbf{x}) = rL(\mathbf{x})}$

for any $\mathbf{x}, \mathbf{y} \in V_1$ and $r \in \mathbb{R}$.

Remark. A function $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = ax + b is a linear transformation of the vector space \mathbb{R} if and only if b = 0.

Properties of linear mappings

Let $L: V_1 \rightarrow V_2$ be a linear mapping.

• $L(r_1\mathbf{v}_1 + \cdots + r_k\mathbf{v}_k) = r_1L(\mathbf{v}_1) + \cdots + r_kL(\mathbf{v}_k)$ for all k > 1, $\mathbf{v}_1, \dots, \mathbf{v}_k \in V_1$, and $r_1, \dots, r_k \in \mathbb{R}$.

$$L(r_1\mathbf{v}_1 + r_2\mathbf{v}_2) = L(r_1\mathbf{v}_1) + L(r_2\mathbf{v}_2) = r_1L(\mathbf{v}_1) + r_2L(\mathbf{v}_2),$$

 $L(r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + r_3\mathbf{v}_3) = L(r_1\mathbf{v}_1 + r_2\mathbf{v}_2) + L(r_3\mathbf{v}_3) =$
 $= r_1L(\mathbf{v}_1) + r_2L(\mathbf{v}_2) + r_3L(\mathbf{v}_3),$ and so on.

• $L(\mathbf{0}_1) = \mathbf{0}_2$, where $\mathbf{0}_1$ and $\mathbf{0}_2$ are zero vectors in V_1 and V_2 , respectively.

$$L(\mathbf{0}_1) = L(0\mathbf{0}_1) = 0L(\mathbf{0}_1) = \mathbf{0}_2.$$

• $L(-\mathbf{v}) = -L(\mathbf{v})$ for any $\mathbf{v} \in V_1$.

$$L(-\mathbf{v}) = L((-1)\mathbf{v}) = (-1)L(\mathbf{v}) = -L(\mathbf{v}).$$

Examples of linear mappings

- Scaling $L: V \to V$, $L(\mathbf{v}) = s\mathbf{v}$, where $s \in \mathbb{R}$. $L(\mathbf{x} + \mathbf{y}) = s(\mathbf{x} + \mathbf{y}) = s\mathbf{x} + s\mathbf{y} = L(\mathbf{x}) + L(\mathbf{y})$, $L(r\mathbf{x}) = s(r\mathbf{x}) = r(s\mathbf{x}) = rL(\mathbf{x})$.
 - Dot product with a fixed vector $\ell: \mathbb{R}^n \to \mathbb{R}, \ \ell(\mathbf{v}) = \mathbf{v} \cdot \mathbf{v}_0, \text{ where } \mathbf{v}_0 \in \mathbb{R}^n.$ $\ell(\mathbf{x} + \mathbf{y}) = (\mathbf{x} + \mathbf{y}) \cdot \mathbf{v}_0 = \mathbf{x} \cdot \mathbf{v}_0 + \mathbf{y} \cdot \mathbf{v}_0 = \ell(\mathbf{x}) + \ell(\mathbf{y}),$ $\ell(r\mathbf{x}) = (r\mathbf{x}) \cdot \mathbf{v}_0 = r(\mathbf{x} \cdot \mathbf{v}_0) = r\ell(\mathbf{x}).$
 - Cross product with a fixed vector $L: \mathbb{R}^3 \to \mathbb{R}^3$, $L(\mathbf{v}) = \mathbf{v} \times \mathbf{v}_0$, where $\mathbf{v}_0 \in \mathbb{R}^3$.
 - Multiplication by a fixed matrix $L: \mathbb{R}^n \to \mathbb{R}^m$, $L(\mathbf{v}) = A\mathbf{v}$, where A is an $m \times n$ matrix and all vectors are column vectors.

Linear mappings of functional vector spaces

- Evaluation at a fixed point
- $\ell: F(\mathbb{R}) \to \mathbb{R}, \ \ell(f) = f(a), \text{ where } a \in \mathbb{R}.$
 - Multiplication by a fixed function
- $L:F(\mathbb{R}) o F(\mathbb{R}),\ L(f)=gf,\ ext{where}\ g\in F(\mathbb{R}).$
- Differentiation $D: C^1(\mathbb{R}) \to C(\mathbb{R})$, L(f) = f'. D(f+g) = (f+g)' = f' + g' = D(f) + D(g), D(rf) = (rf)' = rf' = rD(f).
 - Integration over a finite interval

$$\ell: C(\mathbb{R}) \to \mathbb{R}, \ \ell(f) = \int_a^b f(x) \, dx$$
, where $a, b \in \mathbb{R}, \ a < b$.

Properties of linear mappings

- If a linear mapping $L: V \to W$ is invertible then the inverse mapping $L^{-1}: W \to V$ is also linear.
- If $L: V \to W$ and $M: W \to X$ are linear mappings then the composition $M \circ L: V \to X$ is also linear.
- If $L_1: V \to W$ and $L_2: V \to W$ are linear mappings then the sum $L_1 + L_2$ is also linear.

Linear differential operators

• an ordinary differential operator

$$L: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), \quad L=g_0\frac{d^2}{dx^2}+g_1\frac{d}{dx}+g_2,$$

where g_0, g_1, g_2 are smooth functions on \mathbb{R} .

That is, $L(f) = g_0 f'' + g_1 f' + g_2 f$.

• Laplace's operator $\Delta: C^{\infty}(\mathbb{R}^2) \to C^{\infty}(\mathbb{R}^2)$,

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

(a.k.a. the Laplacian; also denoted by ∇^2).

Range and kernel

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear mapping.

Definition. The **range** (or **image**) of L is the set of all vectors $\mathbf{w} \in W$ such that $\mathbf{w} = L(\mathbf{v})$ for some $\mathbf{v} \in V$. The range of L is denoted L(V).

The **kernel** of L, denoted ker L, is the set of all vectors $\mathbf{v} \in V$ such that $L(\mathbf{v}) = \mathbf{0}$.

Theorem (i) The range of L is a subspace of W. (ii) The kernel of L is a subspace of V.

Example. $L: \mathbb{R}^3 \to \mathbb{R}^3$, $L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

The kernel $\ker L$ is the nullspace of the matrix.

$$L\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + y \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$

The range $f(\mathbb{R}^3)$ is the column space of the matrix.

Example. $L: \mathbb{R}^3 \to \mathbb{R}^3$, $L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

The range of L is spanned by vectors (1,1,1), (0,2,0), and (-1,-1,-1). It follows that $L(\mathbb{R}^3)$ is the plane spanned by (1,1,1) and (0,1,0).

To find ker L, we apply row reduction to the matrix:

$$\begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Hence $(x, y, z) \in \ker L$ if x - z = y = 0. It follows that $\ker L$ is the line spanned by (1, 0, 1).

More examples

$$f: \mathcal{M}_2(\mathbb{R}) o \mathcal{M}_2(\mathbb{R}), \ \ f(A) = A + A^T.$$

$$f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 2a & b+c \\ b+c & 2d \end{pmatrix}.$$

 $\ker f$ is the subspace of anti-symmetric matrices, the range of f is the subspace of symmetric matrices.

$$g: \mathcal{M}_2(\mathbb{R}) o \mathcal{M}_2(\mathbb{R}), \ \ g(A) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} A.$$
 $g\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix}.$

The range of g is the subspace of matrices with the zero second row, $\ker g$ is the same as the range $\implies g(g(A)) = O$.

 \mathcal{P} : the space of polynomials.

 \mathcal{P}_n : the space of polynomials of degree less than n.

$$D: \mathcal{P} \to \mathcal{P}, \ (Dp)(x) = p'(x).$$

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

$$\implies (Dp)(x) = a_1 + 2a_2 x + 3a_3 x^2 + \dots + na_n x^{n-1}$$

The range of D is the entire \mathcal{P} , $\ker D = \mathcal{P}_1 = \mathsf{the}$ subspace of constants.

$$D: \mathcal{P}_4 \to \mathcal{P}_4, \ (Dp)(x) = p'(x).$$

$$p(x) = ax^3 + bx^2 + cx + d \implies (Dp)(x) = 3ax^2 + 2bx + c$$

The range of D is \mathcal{P}_3 , ker $D = \mathcal{P}_1$.