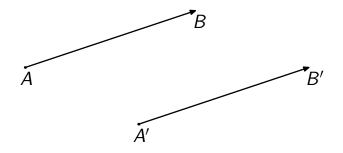
MATH 304

Linear Algebra

Lecture 23: Euclidean structure in \mathbb{R}^n .

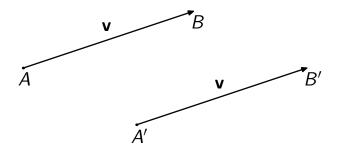
Orthogonality.

Vectors: geometric approach



- A vector is represented by a directed segment.
- Directed segment is drawn as an arrow.
- Different arrows represent the same vector if they are of the same length and direction.

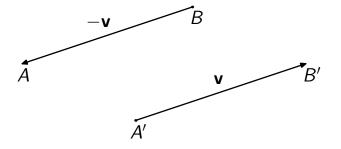
Vectors: geometric approach



AB denotes the vector represented by the arrow with tip at B and tail at A.

 \overrightarrow{AA} is called the zero vector and denoted **0**.

Vectors: geometric approach

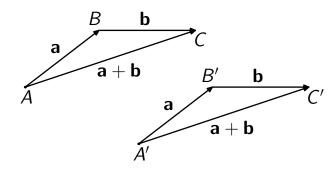


If $\mathbf{v} = \overrightarrow{AB}$ then \overrightarrow{BA} is called the *negative vector* of \mathbf{v} and denoted $-\mathbf{v}$.

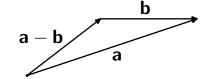
Linear structure: vector addition

Given vectors \mathbf{a} and \mathbf{b} , their sum $\mathbf{a} + \mathbf{b}$ is defined by the rule $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

That is, choose points $\overrightarrow{A}, \overrightarrow{B}, C$ so that $\overrightarrow{AB} = \mathbf{a}$ and $\overrightarrow{BC} = \mathbf{b}$. Then $\mathbf{a} + \mathbf{b} = \overrightarrow{AC}$.

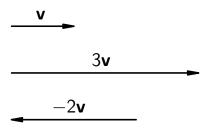


The *difference* of the two vectors is defined as $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b})$.



Linear structure: scalar multiplication

Let \mathbf{v} be a vector and $r \in \mathbb{R}$. By definition, $r\mathbf{v}$ is a vector whose magnitude is |r| times the magnitude of \mathbf{v} . The direction of $r\mathbf{v}$ coincides with that of \mathbf{v} if r > 0. If r < 0 then the directions of $r\mathbf{v}$ and \mathbf{v} are opposite.

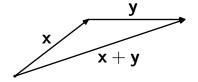


Beyond linearity: length of a vector

The **length** (or the **magnitude**) of a vector \overrightarrow{AB} is the length of the representing segment AB. The length of a vector \mathbf{v} is denoted $|\mathbf{v}|$ or $||\mathbf{v}||$.

Properties of vector length:

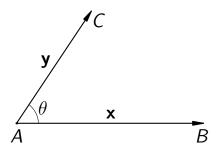
$$|\mathbf{x}| \geq 0$$
, $|\mathbf{x}| = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity) $|r\mathbf{x}| = |r| |\mathbf{x}|$ (homogeneity) $|\mathbf{x} + \mathbf{y}| \leq |\mathbf{x}| + |\mathbf{y}|$ (triangle inequality)

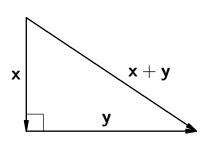


Beyond linearity: angle between vectors

Given nonzero vectors \mathbf{x} and \mathbf{y} , let A, B, and C be points such that $\overrightarrow{AB} = \mathbf{x}$ and $\overrightarrow{AC} = \mathbf{y}$. Then $\angle BAC$ is called the **angle** between \mathbf{x} and \mathbf{y} .

The vectors \mathbf{x} and \mathbf{y} are called **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if the angle between them equals 90° .

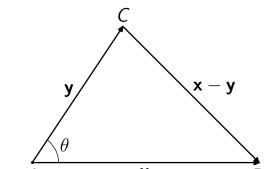




Pythagorean Theorem:

$$\mathbf{x} \perp \mathbf{y} \implies |\mathbf{x} + \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2$$

3-dimensional Pythagorean Theorem: If vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are pairwise orthogonal then $|\mathbf{x} + \mathbf{y} + \mathbf{z}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 + |\mathbf{z}|^2$



A
$$\mathbf{x}$$
 B

Law of cosines:
$$|\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2|\mathbf{x}| |\mathbf{y}| \cos \theta$$

Beyond linearity: dot product

The **dot product** of vectors \mathbf{x} and \mathbf{y} is

$$\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}| |\mathbf{y}| \cos \theta$$
,

where θ is the angle between ${\bf x}$ and ${\bf y}$.

The dot product is also called the **scalar product**.

Alternative notation: (\mathbf{x}, \mathbf{y}) or $\langle \mathbf{x}, \mathbf{y} \rangle$.

The vectors \mathbf{x} and \mathbf{y} are orthogonal if and only if $\mathbf{x} \cdot \mathbf{y} = 0$.

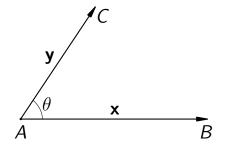
Relations between lengths and dot products:

- $|\mathbf{x}| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$
- $|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|$
- $|\mathbf{x} \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 2 \mathbf{x} \cdot \mathbf{y}$

Euclidean structure

Euclidean structure includes:

- length of a vector: |x|,
- ullet angle between vectors: heta,
- dot product: $\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}| |\mathbf{y}| \cos \theta$.



Vectors: algebraic approach

An *n*-dimensional coordinate vector is an element of \mathbb{R}^n , i.e., an ordered *n*-tuple (x_1, x_2, \dots, x_n) of real numbers.

Let $\mathbf{a}=(a_1,a_2,\ldots,a_n)$ and $\mathbf{b}=(b_1,b_2,\ldots,b_n)$ be vectors, and $r\in\mathbb{R}$ be a scalar. Then, by definition,

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n),$$

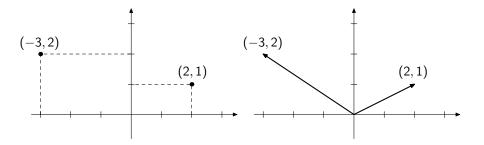
 $r\mathbf{a} = (ra_1, ra_2, \dots, ra_n),$

$$\mathbf{0} = (0, 0, \dots, 0),$$

 $-\mathbf{b} = (-b_1, -b_2, \dots, -b_n),$

$$\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b}) = (a_1 - b_1, a_2 - b_2, \dots, a_n - b_n).$$

Cartesian coordinates: geometric meets algebraic



Once we specify an *origin* O, each point A is associated a *position vector* \overrightarrow{OA} . Conversely, every vector has a unique representative with tail at O.

Cartesian coordinates allow us to identify a line, a plane, and space with \mathbb{R} , \mathbb{R}^2 , and \mathbb{R}^3 , respectively.

Length and distance

Definition. The **length** of a vector $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ is $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$.

The **distance** between vectors/points \mathbf{x} and \mathbf{y} is $\|\mathbf{y} - \mathbf{x}\|$.

Properties of length:

$$\|\mathbf{x}\| \geq 0$$
, $\|\mathbf{x}\| = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity) $\|r\mathbf{x}\| = |r| \|\mathbf{x}\|$ (homogeneity) $\|\mathbf{x} + \mathbf{y}\| \leq \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality)

Scalar product

Definition. The scalar product of vectors $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ is $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{k=1}^n x_k y_k$.

Properties of scalar product:

$$\mathbf{x} \cdot \mathbf{x} \ge 0$$
, $\mathbf{x} \cdot \mathbf{x} = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity)
 $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ (symmetry)
 $(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z}$ (distributive law)
 $(r\mathbf{x}) \cdot \mathbf{y} = r(\mathbf{x} \cdot \mathbf{y})$ (homogeneity)

Relations between lengths and scalar products:

$$\begin{split} \|\mathbf{x}\| &= \sqrt{\mathbf{x} \cdot \mathbf{x}} \\ |\mathbf{x} \cdot \mathbf{y}| &\leq \|\mathbf{x}\| \, \|\mathbf{y}\| \qquad \text{(Cauchy-Schwarz inequality)} \\ \|\mathbf{x} - \mathbf{y}\|^2 &= \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2 \, \mathbf{x} \cdot \mathbf{y} \end{split}$$

By the Cauchy-Schwarz inequality, for any nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ we have

$$\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$
 for some $0 \le \theta \le \pi$.

 θ is called the **angle** between the vectors **x** and **y**. The vectors **x** and **y** are said to be **orthogonal** (denoted **x** \perp **y**) if **x** \cdot **y** = 0 (i.e., if θ = 90°).

Problem. Find the angle θ between vectors $\mathbf{x} = (2, -1)$ and $\mathbf{y} = (3, 1)$.

$$\mathbf{x}=(2,-1)$$
 and $\mathbf{y}=(3,1).$ $\mathbf{x}\cdot\mathbf{y}=5, \ \|\mathbf{x}\|=\sqrt{5}, \ \|\mathbf{y}\|=\sqrt{10}.$

$$\mathbf{x} \cdot \mathbf{y} = 5$$
, $\|\mathbf{x}\| = \sqrt{5}$, $\|\mathbf{y}\| = \sqrt{10}$.
 $\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{5}{\sqrt{5}\sqrt{10}} = \frac{1}{\sqrt{2}} \implies \theta = 45^{\circ}$

Problem. Find the angle ϕ between vectors $\mathbf{v} = (-2, 1, 3)$ and $\mathbf{w} = (4, 5, 1)$.

$$\mathbf{v} \cdot \mathbf{w} = 0 \implies \mathbf{v} \perp \mathbf{w} \implies \phi = 90^{\circ}$$

Orthogonality

Definition 1. Vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are said to be **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y} = 0$.

Definition 2. A vector $\mathbf{x} \in \mathbb{R}^n$ is said to be **orthogonal** to a nonempty set $Y \subset \mathbb{R}^n$ (denoted $\mathbf{x} \perp Y$) if $\mathbf{x} \cdot \mathbf{y} = 0$ for any $\mathbf{y} \in Y$.

Definition 3. Nonempty sets $X, Y \subset \mathbb{R}^n$ are said to be **orthogonal** (denoted $X \perp Y$) if $\mathbf{x} \cdot \mathbf{y} = 0$ for any $\mathbf{x} \in X$ and $\mathbf{y} \in Y$.

Examples in \mathbb{R}^3 . • The line x = y = 0 is orthogonal to the line y = z = 0.

Indeed, if $\mathbf{v} = (0, 0, z)$ and $\mathbf{w} = (x, 0, 0)$ then $\mathbf{v} \cdot \mathbf{w} = 0$.

• The line x = y = 0 is orthogonal to the plane z = 0.

Indeed, if $\mathbf{v} = (0, 0, z)$ and $\mathbf{w} = (x, y, 0)$ then $\mathbf{v} \cdot \mathbf{w} = 0$.

• The line x = y = 0 is not orthogonal to the plane z = 1.

The vector $\mathbf{v} = (0,0,1)$ belongs to both the line and the plane, and $\mathbf{v} \cdot \mathbf{v} = 1 \neq 0$.

• The plane z = 0 is not orthogonal to the plane y = 0.

The vector $\mathbf{v} = (1, 0, 0)$ belongs to both planes and $\mathbf{v} \cdot \mathbf{v} = 1 \neq 0$.