MATH 304 Linear Algebra Lecture 36: Complexification. Symmetric and orthogonal matrices.

Complex numbers

 $\mathbb{C} \colon$ complex numbers.

Complex number:
$$\boxed{z=x+iy}$$
,
where $x,y\in\mathbb{R}$ and $i^2=-1$.
 $i=\sqrt{-1}$: imaginary unit

Alternative notation: z = x + yi.

$$\begin{array}{l} x = \mbox{real part of } z, \\ iy = \mbox{imaginary part of } z \\ y = 0 \implies z = x \mbox{ (real number)} \\ x = 0 \implies z = iy \mbox{ (purely imaginary number)} \end{array}$$

We add, subtract, and multiply complex numbers as polynomials in *i* (but keep in mind that $i^2 = -1$). If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, then $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$, $z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2)$, $z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$.

Given z = x + iy, the complex conjugate of z is $\bar{z} = x - iy$. The modulus of z is $|z| = \sqrt{x^2 + y^2}$. $z\bar{z} = (x + iy)(x - iy) = x^2 - (iy)^2 = x^2 + y^2 = |z|^2$. $z^{-1} = \frac{\bar{z}}{|z|^2}$, $(x + iy)^{-1} = \frac{x - iy}{x^2 + y^2}$.

Complex exponentials

Definition. For any
$$z \in \mathbb{C}$$
 let $e^z = 1 + z + rac{z^2}{2!} + \cdots + rac{z^n}{n!} + \cdots$

Remark. A sequence of complex numbers $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$,... converges to z = x + iy if $x_n \to x$ and $y_n \to y$ as $n \to \infty$.

Theorem 1 If z = x + iy, $x, y \in \mathbb{R}$, then $e^z = e^x(\cos y + i \sin y)$.

In particular, $e^{i\phi} = \cos \phi + i \sin \phi$, $\phi \in \mathbb{R}$.

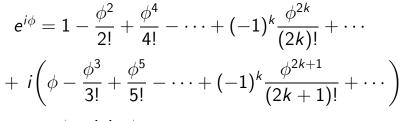
Theorem 2 $e^{z+w} = e^z \cdot e^w$ for all $z, w \in \mathbb{C}$.

Proposition $e^{i\phi} = \cos \phi + i \sin \phi$ for all $\phi \in \mathbb{R}$.

Proof:
$$e^{i\phi} = 1 + i\phi + \frac{(i\phi)^2}{2!} + \dots + \frac{(i\phi)^n}{n!} + \dots$$

The sequence $1, i, i^2, i^3, \dots, i^n, \dots$ is periodic: $1, i, -1, -i, \underbrace{1, i, -1, -i}_{i, \dots}, \dots$

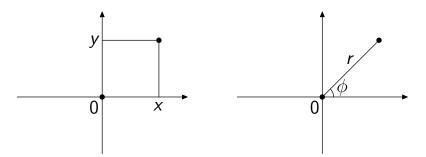
It follows that



 $=\cos\phi + i\sin\phi.$

Geometric representation

Any complex number z = x + iy is represented by the vector/point $(x, y) \in \mathbb{R}^2$.



 $x = r \cos \phi, \ y = r \sin \phi \implies z = r(\cos \phi + i \sin \phi) = re^{i\phi}$ If $z_1 = r_1 e^{i\phi_1}$ and $z_2 = r_2 e^{i\phi_2}$, then $z_1 z_2 = r_1 r_2 e^{i(\phi_1 + \phi_2)}, \ z_1/z_2 = (r_1/r_2) e^{i(\phi_1 - \phi_2)}.$

Fundamental Theorem of Algebra

Any polynomial of degree $n \ge 1$, with complex coefficients, has exactly *n* roots (counting with multiplicities).

Equivalently, if $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$, where $a_i \in \mathbb{C}$ and $a_n \neq 0$, then there exist complex numbers z_1, z_2, \dots, z_n such that $p(z) = a_n (z - z_1)(z - z_2) \dots (z - z_n)$.

Complex eigenvalues/eigenvectors

Example.
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
. $det(A - \lambda I) = \lambda^2 + 1$.

Characteristic roots: $\lambda_1 = i$ and $\lambda_2 = -i$. Associated eigenvectors: $\mathbf{v}_1 = (1, -i)$ and $\mathbf{v}_2 = (1, i)$.

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -i \end{pmatrix} = \begin{pmatrix} i \\ 1 \end{pmatrix} = i \begin{pmatrix} 1 \\ -i \end{pmatrix},$$
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix} = \begin{pmatrix} -i \\ 1 \end{pmatrix} = -i \begin{pmatrix} 1 \\ i \end{pmatrix}.$$

 \mathbf{v}_1 , \mathbf{v}_2 is a basis of eigenvectors. In which space?

Complexification

Instead of the real vector space \mathbb{R}^2 , we consider a *complex vector space* \mathbb{C}^2 (all complex numbers are admissible as scalars).

The linear operator $f : \mathbb{R}^2 \to \mathbb{R}^2$, $f(\mathbf{x}) = A\mathbf{x}$ is extended to a *complex linear operator* $F : \mathbb{C}^2 \to \mathbb{C}^2$, $F(\mathbf{x}) = A\mathbf{x}$. The vectors $\mathbf{v}_1 = (1, -i)$ and $\mathbf{v}_2 = (1, i)$ form a basis for \mathbb{C}^2 .

 \mathbb{C}^2 is also a real vector space (of real dimension 4). The standard real basis for \mathbb{C}^2 is $\mathbf{e}_1 = (1,0)$, $\mathbf{e}_2 = (0,1)$, $i\mathbf{e}_1 = (i,0)$, $i\mathbf{e}_2 = (0,i)$. The matrix of the operator F with respect to this basis has a block structure $\begin{pmatrix} A & O \\ O & A \end{pmatrix}$.

Dot product of complex vectors

Dot product of real vectors

$$\mathbf{x} = (x_1, \dots, x_n), \ \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$$
:
 $\mathbf{x} \cdot \mathbf{y} = x_1y_1 + x_2y_2 + \dots + x_ny_n$.

Dot product of complex vectors $\mathbf{x} = (x_1, \ldots, x_n), \ \mathbf{y} = (y_1, \ldots, y_n) \in \mathbb{C}^n$: $\mathbf{x} \cdot \mathbf{v} = x_1 \overline{v_1} + x_2 \overline{v_2} + \cdots + x_n \overline{v_n}$ If z = r + it $(t, s \in \mathbb{R})$ then $\overline{z} = r - it$, $z\overline{z} = r^2 + t^2 = |z|^2.$ Hence $\mathbf{x} \cdot \mathbf{x} = |x_1|^2 + |x_2|^2 + \dots + |x_n|^2 > 0.$ Also, $\mathbf{x} \cdot \mathbf{x} = 0$ if and only if $\mathbf{x} = \mathbf{0}$. The norm is defined by $\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$.

Normal matrices

Definition. An $n \times n$ matrix A is called

- symmetric if $A^T = A$;
- orthogonal if $AA^T = A^T A = I$, i.e., $A^T = A^{-1}$;
- normal if $AA^T = A^T A$.

Theorem Let A be an $n \times n$ matrix with real entries. Then

(a) A is normal \iff there exists an orthonormal basis for \mathbb{C}^n consisting of eigenvectors of A; (b) A is symmetric \iff there exists an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A.

Example.
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
.

- A is symmetric.
- A has three eigenvalues: 0, 2, and 3.
- Associated eigenvectors are $\mathbf{v}_1 = (-1, 0, 1)$,
- $\mathbf{v}_2=(1,0,1)$, and $\mathbf{v}_3=(0,1,0)$, respectively.
- Vectors $\frac{1}{\sqrt{2}}\mathbf{v}_1, \frac{1}{\sqrt{2}}\mathbf{v}_2, \mathbf{v}_3$ form an orthonormal basis for \mathbb{R}^3 .

Theorem Suppose A is a normal matrix. Then for any $\mathbf{x} \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$ one has

$$A\mathbf{x} = \lambda \mathbf{x} \iff A^T \mathbf{x} = \overline{\lambda} \mathbf{x}.$$

Thus any normal matrix A shares with A^T all real eigenvalues and the corresponding eigenvectors. Also, $A\mathbf{x} = \lambda \mathbf{x} \iff A\overline{\mathbf{x}} = \overline{\lambda} \,\overline{\mathbf{x}}$ for any matrix A with real entries.

Corollary All eigenvalues λ of a symmetric matrix are real $(\overline{\lambda} = \lambda)$. All eigenvalues λ of an orthogonal matrix satisfy $\overline{\lambda} = \lambda^{-1} \iff |\lambda| = 1$.

Why are orthogonal matrices called so?

Theorem Given an $n \times n$ matrix A, the following conditions are equivalent:

(i) A is orthogonal: $A^T = A^{-1}$;

(ii) columns of A form an orthonormal basis for \mathbb{R}^n ; (iii) rows of A form an orthonormal basis for \mathbb{R}^n .

Proof: Entries of the matrix $A^T A$ are dot products of columns of A. Entries of AA^T are dot products of rows of A.

Thus an orthogonal matrix is the transition matrix from one orthonormal basis to another.

Example.
$$A_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$

•
$$A_{\phi}A_{\psi} = A_{\phi+\psi}$$

•
$$A_{\phi}^{-1} = A_{-\phi} = A_{\phi}^T$$

• A_{ϕ} is orthogonal

•
$$\det(A_{\phi} - \lambda I) = (\cos \phi - \lambda)^2 + \sin^2 \phi.$$

• Eigenvalues:
$$\lambda_1 = \cos \phi + i \sin \phi = e^{i\phi}$$
,
 $\lambda_2 = \cos \phi - i \sin \phi = e^{-i\phi}$.

• Associated eigenvectors: $\mathbf{v}_1 = (1, -i)$, $\mathbf{v}_2 = (1, i)$.

• Vectors $\frac{1}{\sqrt{2}}\mathbf{v}_1$ and $\frac{1}{\sqrt{2}}\mathbf{v}_2$ form an orthonormal basis for \mathbb{C}^2 .

Consider a linear operator $L : \mathbb{R}^n \to \mathbb{R}^n$, $L(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ orthogonal matrix.

Theorem There exists an orthonormal basis for \mathbb{R}^n such that the matrix of L relative to this basis has a diagonal block structure

$$\begin{pmatrix} D_{\pm 1} & O & \dots & O \\ O & R_1 & \dots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \dots & R_k \end{pmatrix},$$

where $D_{\pm 1}$ is a diagonal matrix whose diagonal entries are equal to 1 or -1, and

$$extsf{R}_j = egin{pmatrix} \cos \phi_j & -\sin \phi_j \ \sin \phi_j & \cos \phi_j \end{pmatrix}$$
, $\phi_j \in \mathbb{R}.$