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Linear Algebra

Lecture 37:
Rotations in space.



Orthogonal matrices

Definition. A square matrix A is called orthogonal
if AAT = ATA = I , i.e., AT = A−1.

Theorem 1 If A is an n×n orthogonal matrix, then
(i) columns of A form an orthonormal basis for R

n;
(ii) rows of A also form an orthonormal basis for R

n.

Proof: Entries of the matrix ATA are dot products of
columns of A. Entries of AAT are dot products of rows of A.

Theorem 2 If A is an n×n orthogonal matrix,
then (i) A is diagonalizable in the complexified
vector space C

n; (ii) all eigenvalues λ of A satisfy
|λ| = 1.



Example. Aφ =

(

cos φ − sin φ

sin φ cos φ

)

.

• AφAψ = Aφ+ψ

• A−1

φ = A−φ = AT
φ

• Aφ is orthogonal

• det(Aφ − λI ) = (cos φ − λ)2 + sin2 φ.

• Eigenvalues: λ1 = cos φ + i sin φ = e iφ,
λ2 = cos φ − i sin φ = e−iφ.

• Associated eigenvectors: v1 = (1,−i),
v2 = (1, i).

• Vectors v1 and v2 form a basis for C
2.



Consider a linear operator L : R
n → R

n, L(x) = Ax,
where A is an n×n matrix.

Theorem The following conditions are equivalent:
(i) |L(x)| = |x| for all x ∈ R

n;
(ii) L(x) · L(y) = x · y for all x, y ∈ R

n;
(iii) the matrix A is orthogonal.

Definition. A transformation f : R
n → R

n is called
an isometry if it preserves distances between
points: |f (x) − f (y)| = |x − y|.

Theorem Any isometry f : R
n → R

n can be
represented as f (x) = Ax + x0, where x0 ∈ R

n and
A is an orthogonal matrix.



Consider a linear operator L : R
n → R

n, L(x) = Ax,
where A is an n×n orthogonal matrix.

Theorem There exists an orthonormal basis for R
n

such that the matrix of L relative to this basis has a
diagonal block structure











D±1 O . . . O

O R1 . . . O
...

... . . . ...
O O . . . Rk











,

where D±1 is a diagonal matrix whose diagonal
entries are equal to 1 or −1, and

Rj =

(

cos φj − sin φj

sin φj cos φj

)

, φj ∈ R.



Classification of 2×2 orthogonal matrices:

(

cos φ − sin φ

sin φ cos φ

) (

−1 0
0 1

)

rotation reflection
about the origin in a line

Determinant: 1 −1

Eigenvalues: e iφ and e−iφ −1 and 1



Classification of 3×3 orthogonal matrices:

A =





1 0 0
0 cos φ − sin φ
0 sin φ cos φ



, B =





−1 0 0
0 1 0
0 0 1



,

C =





−1 0 0
0 cos φ − sin φ

0 sin φ cos φ



.

A = rotation about a line; B = reflection in a
plane; C = rotation about a line combined with
reflection in the orthogonal plane.

det A = 1, det B = det C = −1.

A has eigenvalues 1, e iφ, e−iφ. B has eigenvalues
−1, 1, 1. C has eigenvalues −1, e iφ, e−iφ.



Rotations in space

If the axis of rotation is oriented, we can say about
clockwise or counterclockwise rotations (with
respect to the view from the positive semi-axis).



Clockwise rotations about coordinate axes





cos θ sin θ 0
− sin θ cos θ 0

0 0 1









cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ









1 0 0
0 cos θ sin θ
0 − sin θ cos θ







Problem. Find the matrix of the rotation by 90o

about the line spanned by the vector c = (1, 2, 2).
The rotation is assumed to be counterclockwise
when looking from the tip of c.

B =





0 −1 0
1 0 0
0 0 1



 is the matrix of (counterclockwise)
rotation by 90o about the z-axis.

We need to find an orthonormal basis v1, v2, v3

such that v3 has the same direction as c. Also, the
basis v1, v2, v3 should obey the same hand rule as
the standard basis. Then B is the matrix of the
given rotation relative to the basis v1, v2, v3.



Let U denote the transition matrix from the basis
v1, v2, v3 to the standard basis (columns of U are
vectors v1, v2, v3). Then the desired matrix is
A = UBU−1.

Since v1, v2, v3 is going to be an orthonormal basis,
the matrix U will be orthogonal. Then U−1 = UT

and A = UBUT .

Remark. The basis v1, v2, v3 obeys the same hand
rule as the standard basis if and only if det U > 0.



Hint. Vectors a = (−2,−1, 2), b = (2,−2, 1),
and c = (1, 2, 2) are orthogonal.

We have |a| = |b| = |c| = 3, hence v1 = 1

3
a,

v2 = 1

3
b, v3 = 1

3
c is an orthonormal basis.

Transition matrix: U = 1

3





−2 2 1
−1 −2 2

2 1 2



.

det U = 1

27

∣

∣

∣

∣

∣

∣

−2 2 1
−1 −2 2

2 1 2

∣

∣

∣

∣

∣

∣

= 1

27
· 27 = 1.

(In the case det U = −1, we would interchange
vectors v1 and v2.)



A = UBUT

= 1

3





−2 2 1
−1 −2 2

2 1 2









0 −1 0
1 0 0
0 0 1



 · 1

3





−2 −1 2
2 −2 1
1 2 2





= 1

9





2 2 1
−2 1 2

1 −2 2









−2 −1 2
2 −2 1
1 2 2





= 1

9





1 −4 8
8 4 1

−4 7 4



.



U = 1

3





−2 2 1
−1 −2 2

2 1 2



 is an orthogonal matrix.

det U = 1 =⇒ U is a rotation matrix.

Problem. (a) Find the axis of the rotation.
(b) Find the angle of the rotation.

The axis is the set of points x ∈ R
n such that

Ux = x ⇐⇒ (U − I )x = 0. To find the axis, we
apply row reduction to the matrix 3(U − I ):

3U − 3I =





−5 2 1
−1 −5 2

2 1 −1



 →





−3 3 0
−1 −5 2

2 1 −1







→





1 −1 0
−1 −5 2

2 1 −1



 →





1 −1 0
0 −6 2
2 1 −1



 →





1 −1 0
0 −6 2
0 3 −1



 →





1 −1 0
0 0 0
0 3 −1



 →





1 −1 0
0 3 −1
0 0 0





→





1 −1 0
0 1 −1/3
0 0 0



 →





1 0 −1/3
0 1 −1/3
0 0 0





Thus Ux = x ⇐⇒

{

x − z/3 = 0
y − z/3 = 0

The general solution is x = y = t/3, z = t, t ∈ R.
=⇒ d = (1, 1, 3) is the direction of the axis.



U = 1

3





−2 2 1
−1 −2 2

2 1 2





Let φ be the angle of rotation. Then the
eigenvalues of U are 1, e iφ, and e−iφ. Therefore

det(U − λI ) = (1 − λ)(e iφ − λ)(e−iφ − λ).

Besides, det(U − λI ) = −λ3 + c1λ
2 + c2λ + c3,

where c1 = tr U (the sum of diagonal entries).
It follows that

tr U = 1 + e iφ + e−iφ = 1 + 2 cos φ.

tr U = −2/3 =⇒ cos φ = −5/6 =⇒ φ ≈ 146.44o


