MATH 304

Lecture 12: Rank and nullity of a matrix.

Linear Algebra

Basis

Definition. Let V be a vector space. A linearly independent spanning set for V is called a **basis**.

Equivalently, a subset $S \subset V$ is a basis for V if any vector $\mathbf{v} \in V$ is uniquely represented as a linear combination

$$\mathbf{v}=r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k,$$

where $\mathbf{v}_1, \dots, \mathbf{v}_k$ are distinct vectors from S and $r_1, \dots, r_k \in \mathbb{R}$.

Remark on uniqueness. Expansions $\mathbf{v} = 2\mathbf{v}_1 + 3\mathbf{v}_2 - \mathbf{v}_3$ and $\mathbf{v} = 2\mathbf{v}_1 + 3\mathbf{v}_2 - \mathbf{v}_3 + 0\mathbf{v}_4$ are considered the same.

Dimension

Theorem 1 Any vector space has a basis.

Theorem 2 If a vector space V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The **dimension** of a vector space V, denoted dim V, is the number of elements in any of its bases.

Examples. • dim $\mathbb{R}^n = n$

- $\mathcal{M}_{m,n}(\mathbb{R})$: the space of $m \times n$ matrices; dim $\mathcal{M}_{m,n} = mn$
- \mathcal{P}_n : polynomials of degree less than n; dim $\mathcal{P}_n = n$
- \mathcal{P} : the space of all polynomials; $\dim \mathcal{P} = \infty$
- $\{\mathbf{0}\}$: the trivial vector space; dim $\{\mathbf{0}\} = 0$

Theorem Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be vectors in \mathbb{R}^n .

Then the following conditions are equivalent:

- (i) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for \mathbb{R}^n ;
- (ii) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a spanning set for \mathbb{R}^n ;
- (iii) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a linearly independent set.

Theorem Let S be a subset of a vector space V. Then the following conditions are equivalent:

- (i) S is a linearly independent spanning set for V, i.e., a basis;
- (ii) S is a minimal spanning set for V;
- (iii) S is a maximal linearly independent subset of V.

How to find a basis?

- **Theorem** Let V be a vector space. Then
- (i) any spanning set for V can be reduced to a minimal spanning set;
- (ii) any linearly independent subset of V can be extended to a maximal linearly independent set.
- That is, any spanning set contains a basis, while any linearly independent set is contained in a basis.
- Approach 1. Get a spanning set for the vector space, then reduce this set to a basis.
- Approach 2. Build a maximal linearly independent set adding one vector at a time.

Vectors $\mathbf{v}_1 = (0, 1, 0)$ and $\mathbf{v}_2 = (-2, 0, 1)$ are linearly independent.

Problem. Extend the set $\{\mathbf v_1, \mathbf v_2\}$ to a basis for $\mathbb R^3.$

Our task is to find a vector \mathbf{v}_3 that is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 .

Then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ will be a basis for \mathbb{R}^3 .

Hint 1. \mathbf{v}_1 and \mathbf{v}_2 span the plane x + 2z = 0.

The vector $\mathbf{v}_3 = (1, 1, 1)$ does not lie in the plane x + 2z = 0, hence it is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . Thus $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for \mathbb{R}^3 .

Vectors $\mathbf{v}_1 = (0, 1, 0)$ and $\mathbf{v}_2 = (-2, 0, 1)$ are linearly independent.

Problem. Extend the set $\{\mathbf v_1, \mathbf v_2\}$ to a basis for $\mathbb R^3$.

Our task is to find a vector \mathbf{v}_3 that is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . Then $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ will be a basis for \mathbb{R}^3 .

Hint 2. At least one of vectors $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, and $\mathbf{e}_3 = (0, 0, 1)$ is a desired one.

Let us check that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_1\}$ and $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_3\}$ are two bases for \mathbb{R}^3 :

$$\begin{vmatrix} 0 & -2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = 1 \neq 0, \quad \begin{vmatrix} 0 & -2 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 2 \neq 0.$$

Row space of a matrix

Definition. The **row space** of an $m \times n$ matrix A is the subspace of \mathbb{R}^n spanned by rows of A.

The dimension of the row space is called the **rank** of the matrix A.

Theorem 1 The rank of a matrix A is the maximal number of linearly independent rows in A.

Theorem 2 Elementary row operations do not change the row space of a matrix.

Theorem 3 If a matrix A is in row echelon form, then the nonzero rows of A are linearly independent.

Corollary The rank of a matrix is equal to the number of nonzero rows in its row echelon form.

Theorem Elementary row operations do not change the row space of a matrix.

Proof: Suppose that A and B are $m \times n$ matrices such that B is obtained from A by an elementary row operation. Let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be the rows of A and $\mathbf{b}_1, \ldots, \mathbf{b}_m$ be the rows of B. We have to show that $\operatorname{Span}(\mathbf{a}_1, \ldots, \mathbf{a}_m) = \operatorname{Span}(\mathbf{b}_1, \ldots, \mathbf{b}_m)$.

Observe that any row \mathbf{b}_i of B belongs to $\mathrm{Span}(\mathbf{a}_1,\ldots,\mathbf{a}_m)$. Indeed, either $\mathbf{b}_i=\mathbf{a}_j$ for some $1\leq j\leq m$, or $\mathbf{b}_i=r\mathbf{a}_i$ for some scalar $r\neq 0$, or $\mathbf{b}_i=\mathbf{a}_i+r\mathbf{a}_i$ for some $j\neq i$ and $r\in \mathbb{R}$.

It follows that $\operatorname{Span}(\mathbf{b}_1,\ldots,\mathbf{b}_m)\subset\operatorname{Span}(\mathbf{a}_1,\ldots,\mathbf{a}_m)$.

Now the matrix A can also be obtained from B by an elementary row operation. By the above,

$$\operatorname{Span}(\mathbf{a}_1,\ldots,\mathbf{a}_m)\subset\operatorname{Span}(\mathbf{b}_1,\ldots,\mathbf{b}_m).$$

Problem. Find the rank of the matrix

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Elementary row operations do not change the row space. Let us convert *A* to row echelon form:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

It follows that the row space of A is the entire space

Vectors (1, 1, 0), (0, 1, 1), and (0, 0, 1) form a basis for the row space of A. Thus the rank of A is 3.

 \mathbb{R}^3

Problem. Find a basis for the vector space V spanned by vectors $\mathbf{w}_1 = (1, 1, 0)$, $\mathbf{w}_2 = (0, 1, 1)$, $\mathbf{w}_3 = (2, 3, 1)$, and $\mathbf{w}_4 = (1, 1, 1)$.

The vector space V is the row space of a matrix

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

According to the solution of the previous problem, vectors (1,1,0), (0,1,1), and (0,0,1) form a basis for V.

Column space of a matrix

Definition. The **column space** of an $m \times n$ matrix A is the subspace of \mathbb{R}^m spanned by columns of A.

Theorem 1 The column space of a matrix A coincides with the row space of the transpose matrix A^T .

Theorem 2 Elementary column operations do not change the column space of a matrix.

Theorem 3 Elementary row operations do not change the dimension of the column space of a matrix (although they can change the column space).

Theorem 4 For any matrix, the row space and the column space have the same dimension.

Problem. Find a basis for the column space of the matrix

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

The column space of A coincides with the row space of A^T . To find a basis, we convert A^T to row echelon form:

$$A^{T} = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Vectors (1,0,2,1), (0,1,1,0), and (0,0,0,1) form a basis for the column space of A.

Problem. Find a basis for the column space of the matrix

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Alternative solution: We already know from a previous problem that the rank of A is 3. It follows that the columns of A are linearly independent. Therefore these columns form a basis for the column space.

Nullspace of a matrix

Let $A = (a_{ij})$ be an $m \times n$ matrix.

Definition. The **nullspace** of the matrix A, denoted N(A), is the set of all n-dimensional column vectors \mathbf{x} such that $A\mathbf{x} = \mathbf{0}$.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

The nullspace N(A) is the solution set of a system of linear homogeneous equations (with A as the coefficient matrix).

Let $A = (a_{ii})$ be an $m \times n$ matrix.

Theorem The nullspace N(A) is a subspace of the vector space \mathbb{R}^n .

Proof: We have to show that N(A) is nonempty, closed under addition, and closed under scaling.

First of all, $A\mathbf{0} = \mathbf{0} \implies \mathbf{0} \in N(A) \implies N(A)$ is not empty.

Secondly, if $\mathbf{x}, \mathbf{y} \in N(A)$, i.e., if $A\mathbf{x} = A\mathbf{y} = \mathbf{0}$, then

 $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = \mathbf{0} + \mathbf{0} = \mathbf{0} \implies \mathbf{x} + \mathbf{y} \in N(A).$

Thirdly, if $\mathbf{x} \in \mathcal{N}(A)$, i.e., if $A\mathbf{x} = \mathbf{0}$, then for any $r \in \mathbb{R}$ one has $A(r\mathbf{x}) = r(A\mathbf{x}) = r\mathbf{0} = \mathbf{0} \implies r\mathbf{x} \in \mathcal{N}(A)$.

Definition. The dimension of the nullspace N(A) is called the **nullity** of the matrix A.

Problem. Find the nullity of the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \end{pmatrix}.$$

Elementary row operations do not change the nullspace. Let us convert A to reduced row echelon form:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \end{pmatrix}$$

$$\begin{cases} x_1 - x_3 - 2x_4 = 0 \\ x_2 + 2x_3 + 3x_4 = 0 \end{cases} \iff \begin{cases} x_1 = x_3 + 2x_4 \\ x_2 = -2x_3 - 3x_4 \end{cases}$$

General element of N(A):

$$(x_1, x_2, x_3, x_4) = (t + 2s, -2t - 3s, t, s)$$

= $t(1, -2, 1, 0) + s(2, -3, 0, 1), t, s \in \mathbb{R}$.

Vectors (1, -2, 1, 0) and (2, -3, 0, 1) form a basis for N(A). Thus the nullity of the matrix A is 2.

rank + nullity

Theorem The rank of a matrix A plus the nullity of A equals the number of columns in A.

Sketch of the proof: The rank of A equals the number of nonzero rows in the row echelon form, which equals the number of leading entries.

The nullity of A equals the number of free variables in the corresponding system, which equals the number of columns without leading entries in the row echelon form.

Consequently, rank+nullity is the number of all columns in the matrix A.

Problem. Find the nullity of the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \end{pmatrix}.$$

Alternative solution: Clearly, the rows of A are linearly independent. Therefore the rank of A is 2. Since

(rank of A) + (nullity of A) = 4,

it follows that the nullity of *A* is 2.