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Linear Algebra

Lecture 16:
Matrix transformations (continued).

Matrix of a linear transformation.



Linear transformation

Definition. Given vector spaces V1 and V2, a
mapping L : V1 → V2 is linear if

L(x + y) = L(x) + L(y),

L(rx) = rL(x)

for any x, y ∈ V1 and r ∈ R.

Basic properties of linear mappings:

• L(r1v1 + · · · + rkvk) = r1L(v1) + · · · + rkL(vk)
for all k ≥ 1, v1, . . . , vk ∈ V1, and r1, . . . , rk ∈ R.

• L(01) = 02, where 01 and 02 are zero vectors in
V1 and V2, respectively.

• L(−v) = −L(v) for any v ∈ V1.



Matrix transformations

Any m×n matrix A gives rise to a transformation
L : R

n → R
m given by L(x) = Ax, where x ∈ R

n

and L(x) ∈ R
m are regarded as column vectors.

This transformation is linear.

Example. L
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Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) be the
standard basis for R

3. We have that L(e1) = (1, 3, 0),
L(e2) = (0, 4, 5), L(e3) = (2, 7, 8). Thus L(e1), L(e2), L(e3)
are columns of the matrix.



Problem. Find a linear mapping L : R
3 → R

2

such that L(e1) = (1, 1), L(e2) = (0,−2),
L(e3) = (3, 0), where e1, e2, e3 is the standard
basis for R

3.

L(x , y , z) = L(xe1 + ye2 + ze3)

= xL(e1) + yL(e2) + zL(e3)

= x(1, 1) + y(0,−2) + z(3, 0) = (x + 3z , x − 2y)

L(x , y , z) =

(

x + 3z
x − 2y

)

=

(

1 0 3
1 −2 0

)
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Columns of the matrix are vectors L(e1), L(e2), L(e3).



Theorem Suppose L : R
n → R

m is a linear map. Then
there exists an m×n matrix A such that L(x) = Ax for all
x ∈ R

n. Columns of A are vectors L(e1), L(e2), . . . , L(en),
where e1, e2, . . . , en is the standard basis for R

n.

y = Ax ⇐⇒
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⇐⇒









y1

y2

...
ym









= x1









a11

a21

...
am1









+ x2









a12

a22

...
am2









+ · · · + xn









a1n

a2n

...
amn











Basis and coordinates

If {v1, v2, . . . , vn} is a basis for a vector space V ,
then any vector v ∈ V has a unique representation

v = x1v1 + x2v2 + · · · + xnvn,

where xi ∈ R. The coefficients x1, x2, . . . , xn are
called the coordinates of v with respect to the
ordered basis v1, v2, . . . , vn.

The mapping

vector v 7→ its coordinates (x1, x2, . . . , xn)

provides a one-to-one correspondence between V

and R
n. Besides, this mapping is linear.



Matrix of a linear transformation

Let V , W be vector spaces and f : V → W be a linear map.
Let v1, v2, . . . , vn be a basis for V and g1 : V → R

n be the
coordinate mapping corresponding to this basis.

Let w1,w2, . . . ,wm be a basis for W and g2 : W → R
m

be the coordinate mapping corresponding to this basis.

V
f−→ W

g1





y





y
g2

R
n −→ R

m

The composition g2◦f ◦g−1

1
is a linear mapping of R

n to R
m.

It is represented as x 7→ Ax, where A is an m×n matrix.

A is called the matrix of f with respect to bases v1, . . . , vn

and w1, . . . ,wm. Columns of A are coordinates of vectors
f (v1), . . . , f (vn) with respect to the basis w1, . . . ,wm.



Examples. • D : P3 → P2, (Dp)(x) = p′(x).

Let AD be the matrix of D with respect to the bases
1, x , x2 and 1, x . Columns of AD are coordinates
of polynomials D1, Dx , Dx2 w.r.t. the basis 1, x .

D1 = 0, Dx = 1, Dx2 = 2x =⇒ AD =

(

0 1 0
0 0 2

)

• L : P3 → P3, (Lp)(x) = p(x + 1).

Let AL be the matrix of L w.r.t. the basis 1, x , x2.
L1 = 1, Lx = 1 + x , Lx2 = (x + 1)2 = 1 + 2x + x2.

=⇒ AL =





1 1 1
0 1 2
0 0 1







Problem. Consider a linear operator L on the
vector space of 2×2 matrices given by

L

(

x y

z w

)

=

(

1 2
3 4

)(

x y

z w

)

.

Find the matrix of L with respect to the basis

E1 =

(

1 0
0 0

)

, E2 =

(

0 1
0 0

)

, E3 =

(

0 0
1 0

)

, E4 =

(

0 0
0 1

)

.

Let ML denote the desired matrix.

By definition, ML is a 4×4 matrix whose columns are
coordinates of the matrices L(E1), L(E2), L(E3), L(E4)
with respect to the basis E1, E2, E3, E4.



L(E1) =

(

1 2
3 4

)(

1 0
0 0

)

=

(

1 0
3 0

)

= 1E1+0E2+3E3+0E4,

L(E2) =

(

1 2
3 4

)(

0 1
0 0

)

=

(

0 1
0 3

)

= 0E1+1E2+0E3+3E4,

L(E3) =

(

1 2
3 4

)(

0 0
1 0

)

=

(

2 0
4 0

)

= 2E1+0E2+4E3+0E4,

L(E4) =

(

1 2
3 4

)(

0 0
0 1

)

=

(

0 2
0 4

)

= 0E1+2E2+0E3+4E4.

It follows that

ML =









1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4









.



Thus the relation
(

x1 y1

z1 w1

)

=

(

1 2
3 4

)(

x y

z w

)

is equivalent to the relation
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=









1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4
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.



Problem. Consider a linear operator L : R
2 → R

2,

L

(

x

y

)

=

(

1 1
0 1

)(

x

y

)

.

Find the matrix of L with respect to the basis
v1 = (3, 1), v2 = (2, 1).

Let N be the desired matrix. Columns of N are coordinates of
the vectors L(v1) and L(v2) w.r.t. the basis v1, v2.

L(v1) =

(

1 1
0 1

)(

3
1

)

=

(

4
1

)

, L(v2) =

(

1 1
0 1

)(

2
1

)

=

(

3
1

)

.

Clearly, L(v2) = v1 = 1v1 + 0v2.

L(v1) = αv1 + βv2 ⇐⇒
{

3α + 2β = 4
α + β = 1

⇐⇒
{

α = 2
β = −1

Thus N =

(

2 1
−1 0

)

.



Change of basis for a linear operator

Let L : V → V be a linear operator on a vector space V .

Let A be the matrix of L relative to a basis a1, a2, . . . , an

for V . Let B be the matrix of L relative to another basis
b1,b2, . . . ,bn for V .

Let U be the transition matrix from the basis a1, a2, . . . , an

to b1,b2, . . . ,bn.

a-coordinates of v
A−→ a-coordinates of L(v)

U




y





y
U

b-coordinates of v
B−→ b-coordinates of L(v)

It follows that UAx = BUx for all x ∈ R
n =⇒ UA = BU .

Then A = U−1BU and B = UAU−1.



Problem. Consider a linear operator L : R
2 → R

2,

L

(

x

y

)

=

(

1 1
0 1

)(

x

y

)

.

Find the matrix of L with respect to the basis
v1 = (3, 1), v2 = (2, 1).

Let S be the matrix of L with respect to the standard basis,
N be the matrix of L with respect to the basis v1, v2, and U be
the transition matrix from v1, v2 to e1, e2. Then N = U−1SU .

S =

(

1 1
0 1

)

, U =

(

3 2
1 1

)

,

N = U−1SU =

(

1 −2
−1 3

)(

1 1
0 1

)(

3 2
1 1

)

=

(

1 −1
−1 2

)(

3 2
1 1

)

=

(

2 1
−1 0

)

.



Similarity

Definition. An n×n matrix B is said to be similar
to an n×n matrix A if B = S−1AS for some
nonsingular n×n matrix S .

Remark. Two n×n matrices are similar if and only
if they represent the same linear operator on R

n

with respect to different bases.

Theorem If A and B are similar matrices then they
have the same (i) determinant, (ii) trace = the
sum of diagonal entries, (iii) rank, and (iv) nullity.



Linear transformations of R
2

Any linear mapping f : R
2 → R

2 is represented as
multiplication of a 2-dimensional column vector by a
2×2 matrix: f (x) = Ax or

f

(

x

y

)

=

(

a b

c d

)(

x

y

)

.

Linear transformations corresponding to particular
matrices can have various geometric properties.
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Texture Rotation by 90o
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0 1
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Texture Reflection about
the line x − y = 0
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3 0
0 1/3
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Texture Squeeze
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Vertical projection on
the horizontal axis
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Horizontal projection
on the line x + y = 0
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