
MATH 304

Linear Algebra

Lecture 18:
Orthogonal complement (continued).

Orthogonal projection.
Least squares problems.



Euclidean structure

Euclidean structure in R
n includes:

• length of a vector: |x|,
• angle between vectors: θ,
• dot product: x · y = |x| |y| cos θ.
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Length and distance

Definition. The length of a vector
v = (v1, v2, . . . , vn) ∈ R

n is

‖v‖ =
√

v 2

1
+ v 2

2
+ · · · + v 2

n
.

The distance between vectors/points x and y is
‖y − x‖.

Properties of length:

‖x‖ ≥ 0, ‖x‖ = 0 only if x = 0 (positivity)

‖rx‖ = |r | ‖x‖ (homogeneity)

‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality)



Scalar product

Definition. The scalar product of vectors
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is

x · y = x1y1 + x2y2 + · · · + xnyn.

Properties of scalar product:

x · x ≥ 0, x · x = 0 only if x = 0 (positivity)
x · y = y · x (symmetry)
(x + y) · z = x · z + y · z (distributive law)
(rx) · y = r(x · y) (homogeneity)

In particular, x · y is a bilinear function (i.e., it is
both a linear function of x and a linear function of y).



Angle

Cauchy-Schwarz inequality: |x · y| ≤ ‖x‖ ‖y‖.

By the Cauchy-Schwarz inequality, for any nonzero
vectors x, y ∈ R

n we have

cos θ =
x · y

‖x‖ ‖y‖ for a unique 0 ≤ θ ≤ π.

θ is called the angle between the vectors x and y.

The vectors x and y are said to be orthogonal

(denoted x ⊥ y) if x · y = 0 (i.e., if θ = 90o).



Orthogonality

Definition 1. Vectors x, y ∈ R
n are said to be

orthogonal (denoted x ⊥ y) if x · y = 0.

Definition 2. A vector x ∈ R
n is said to be

orthogonal to a nonempty set Y ⊂ R
n (denoted

x ⊥ Y ) if x · y = 0 for any y ∈ Y .

Definition 3. Nonempty sets X , Y ⊂ R
n are said

to be orthogonal (denoted X ⊥ Y ) if x · y = 0
for any x ∈ X and y ∈ Y .



Orthogonal complement

Definition. Let S ⊂ R
n. The orthogonal

complement of S , denoted S⊥, is the set of all
vectors x ∈ R

n that are orthogonal to S .

Theorem 1 (i) S⊥ is a subspace of R
n.

(ii) Span(S)⊥ = S⊥.
(iii) (S⊥)⊥ = Span(S).

Theorem 2 If V is a subspace of R
n, then

(i) (V⊥)⊥ = V ,
(ii) V ∩ V⊥ = {0}.
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Fundamental subspaces

Definition. Given an m×n matrix A, let

N(A) = {x ∈ R
n | Ax = 0},

R(A) = {b ∈ R
m | b = Ax for some x ∈ R

n}.

R(A) is the range of a linear mapping L : R
n → R

m,
L(x) = Ax. N(A) is the kernel of L.

Also, N(A) is the nullspace of the matrix A while
R(A) is the column space of A. The row space of
A is R(AT ).

The subspaces N(A), R(AT ) ⊂ R
n and

R(A), N(AT ) ⊂ R
m are fundamental subspaces

associated to the matrix A.



Theorem N(A) = R(AT )⊥, N(AT ) = R(A)⊥.
That is, the nullspace of a matrix is the orthogonal
complement of its row space.

Proof: The equality Ax = 0 means that the vector x is
orthogonal to rows of the matrix A. Therefore N(A) = S⊥,
where S is the set of rows of A. It remains to note that
S⊥ = Span(S)⊥ = R(AT )⊥.

Corollary Let V be a subspace of R
n. Then

dim V + dim V⊥ = n.

Proof: Pick a basis v1, . . . , vk for V . Let A be the k×n

matrix whose rows are vectors v1, . . . , vk . Then V = R(AT ),
hence V⊥ = N(A). Consequently, dim V and dim V⊥ are
rank and nullity of A. Therefore dim V + dim V⊥ equals the
number of columns of A, which is n.



Orthogonal projection

Theorem 1 Let V be a subspace of R
n. Then

any vector x ∈ R
n is uniquely represented as

x = p + o, where p ∈ V and o ∈ V⊥.

Idea of the proof: Let v1, . . . , vk be a basis for V and
w1, . . . ,wm be a basis for V⊥. Then v1, . . . , vk ,w1, . . . ,wm

is a basis for R
n.

In the above expansion, p is called the orthogonal

projection of the vector x onto the subspace V .

Theorem 2 ‖x − v‖ > ‖x − p‖ for any v 6= p in V .

Thus ‖o‖ = ‖x − p‖ = min
v∈V

‖x − v‖ is the

distance from the vector x to the subspace V .
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Orthogonal projection onto a vector

Let x, y ∈ R
n, with y 6= 0.

Then there exists a unique decomposition x = p+o

such that p is parallel to y and o is orthogonal to y.

y

p

xo

p = orthogonal projection of x onto y



Orthogonal projection onto a vector

Let x, y ∈ R
n, with y 6= 0.

Then there exists a unique decomposition x = p+o
such that p is parallel to y and o is orthogonal to y.

We have p = αy for some α ∈ R. Then

0 = o · y = (x − αy) · y = x · y − αy · y.

=⇒ α =
x · y
y · y =⇒ p =

x · y
y · y y



Problem. Find the distance from the point
x = (3, 1) to the line spanned by y = (2,−1).

Consider the decomposition x = p + o, where p is parallel to
y while o ⊥ y. The required distance is the length of the
orthogonal component o.

p =
x · y
y · y y =

5

5
(2,−1) = (2,−1),

o = x − p = (3, 1) − (2,−1) = (1, 2), ‖o‖ =
√

5.

Problem. Find the point on the line y = −x that
is closest to the point (3, 4).

The required point is the projection p of v = (3, 4) on the
vector w = (1,−1) spanning the line y = −x .

p =
v · w
w · w w =

−1

2
(1,−1) =

(

−1

2
,
1

2

)



Problem. Let Π be the plane spanned by vectors
v1 = (1, 1, 0) and v2 = (0, 1, 1).
(i) Find the orthogonal projection of the vector
x = (4, 0,−1) onto the plane Π.
(ii) Find the distance from x to Π.

We have x = p + o, where p ∈ Π and o ⊥ Π.
Then the orthogonal projection of x onto Π is p and
the distance from x to Π is ‖o‖.
We have p = αv1 + βv2 for some α, β ∈ R.
Then o = x − p = x − αv1 − βv2.
{

o · v1 = 0
o · v2 = 0

⇐⇒
{

α(v1 · v1) + β(v2 · v1) = x · v1

α(v1 · v2) + β(v2 · v2) = x · v2



x = (4, 0,−1), v1 = (1, 1, 0), v2 = (0, 1, 1)

{

α(v1 · v1) + β(v2 · v1) = x · v1

α(v1 · v2) + β(v2 · v2) = x · v2

⇐⇒
{

2α + β = 4
α + 2β = −1

⇐⇒
{

α = 3
β = −2

p = 3v1 − 2v2 = (3, 1,−2)

o = x − p = (1,−1, 1)

‖o‖ =
√

3



Problem. Let Π be the plane spanned by vectors
v1 = (1, 1, 0) and v2 = (0, 1, 1).
(i) Find the orthogonal projection of the vector
x = (4, 0,−1) onto the plane Π.
(ii) Find the distance from x to Π.

Alternative solution: We have x = p + o, where p ∈ Π and
o ⊥ Π. Then the orthogonal projection of x onto Π is p and
the distance from x to Π is ‖o‖.
Notice that o is the orthogonal projection of x onto the
orthogonal complement Π⊥. In the previous lecture, we found
that Π⊥ is the line spanned by the vector y = (1,−1, 1). It
follows that

o =
x · y
y · y y =

3

3
(1,−1, 1) = (1,−1, 1).

Then p = x − o = (4, 0,−1) − (1,−1, 1) = (3, 1,−2) and
‖o‖ =

√
3.



Overdetermined system of linear equations:






x + 2y = 3
3x + 2y = 5
x + y = 2.09

⇐⇒







x + 2y = 3
−4y = −4
−y = −0.91

No solution: inconsistent system

Assume that a solution (x0, y0) does exist but the
system is not quite accurate, namely, there may be
some errors in the right-hand sides.

Problem. Find a good approximation of (x0, y0).

One approach is the least squares fit. Namely, we
look for a pair (x , y) that minimizes the sum
(x + 2y − 3)2 + (3x + 2y − 5)2 + (x + y − 2.09)2.



Least squares solution

System of linear equations:














a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · · · · · · ·
am1x1 + am2x2 + · · · + amnxn = bm

⇐⇒ Ax = b

For any x ∈ R
n define a residual r(x) = b − Ax.

The least squares solution x to the system is the
one that minimizes ‖r(x)‖ (or, equivalently, ‖r(x)‖2).

‖r(x)‖2 =
m

∑

i=1

(ai1x1 + ai2x2 + · · · + ainxn − bi)
2



Let A be an m×n matrix and let b ∈ R
m.

Theorem A vector x̂ is a least squares solution of
the system Ax = b if and only if it is a solution of

the associated normal system ATAx = ATb.

Proof: Ax is an arbitrary vector in R(A), the column space of
A. Hence the length of r(x) = b− Ax is minimal if Ax is the
orthogonal projection of b onto R(A). That is, if r(x) is
orthogonal to R(A).

We know that R(A)⊥ = N(AT ), the nullspace of the
transpose matrix. Thus x̂ is a least squares solution if and
only if

AT r(x̂) = 0 ⇐⇒ AT (b − Ax̂) = 0 ⇐⇒ ATAx̂ = ATb.



Problem. Find the least squares solution to






x + 2y = 3
3x + 2y = 5
x + y = 2.09
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1 1
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2 2 1
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)
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(

11 9
9 9

) (

x

y

)

=

(

20.09
18.09

)

⇐⇒
{

x = 1
y = 1.01


