MATH 304
Linear Algebra

Lecture 18:
Orthogonal complement (continued).
Orthogonal projection.
Least squares problems.

Euclidean structure

Euclidean structure in \mathbb{R}^{n} includes:

- length of a vector: $|\mathbf{x}|$,
- angle between vectors: θ,
- dot product: $\mathbf{x} \cdot \mathbf{y}=|\mathbf{x}||\mathbf{y}| \cos \theta$.

Length and distance

Definition. The length of a vector

$$
\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{R}^{n} \text { is }
$$

$$
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

The distance between vectors/points \mathbf{x} and \mathbf{y} is

$$
\|\mathbf{y}-\mathbf{x}\| .
$$

Properties of length:

$$
\begin{array}{lr}
\|\mathbf{x}\| \geq 0, \quad\|\mathbf{x}\|=0 \text { only if } \mathbf{x}=\mathbf{0} & \text { (positivity) } \\
\|r \mathbf{x}\|=|r|\|\mathbf{x}\| & \text { (homogeneity) } \\
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| & \text { (triangle inequality) }
\end{array}
$$

Scalar product

Definition. The scalar product of vectors

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { and } \mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \text { is }
$$

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

Properties of scalar product:
$\mathbf{x} \cdot \mathbf{x} \geq 0, \mathbf{x} \cdot \mathbf{x}=0$ only if $\mathbf{x}=\mathbf{0}$
(positivity)
$x \cdot y=y \cdot x$
(symmetry)
$(\mathbf{x}+\mathbf{y}) \cdot \mathbf{z}=\mathbf{x} \cdot \mathbf{z}+\mathbf{y} \cdot \mathbf{z}$
$(r \mathbf{x}) \cdot \mathbf{y}=r(\mathbf{x} \cdot \mathbf{y})$
(distributive law)
(homogeneity)
In particular, $\mathbf{x} \cdot \mathbf{y}$ is a bilinear function (i.e., it is both a linear function of \mathbf{x} and a linear function of \mathbf{y}).

Angle

Cauchy-Schwarz inequality: $\quad|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.
By the Cauchy-Schwarz inequality, for any nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ we have

$$
\cos \theta=\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|} \text { for a unique } 0 \leq \theta \leq \pi
$$

θ is called the angle between the vectors \mathbf{x} and \mathbf{y}.
The vectors \mathbf{x} and \mathbf{y} are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y}=0$ (i.e., if $\theta=90^{\circ}$).

Orthogonality

Definition 1. Vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y}=0$.

Definition 2. A vector $\mathrm{x} \in \mathbb{R}^{n}$ is said to be orthogonal to a nonempty set $Y \subset \mathbb{R}^{n}$ (denoted $\mathbf{x} \perp Y)$ if $\mathbf{x} \cdot \mathbf{y}=0$ for any $\mathbf{y} \in Y$.

Definition 3. Nonempty sets $X, Y \subset \mathbb{R}^{n}$ are said to be orthogonal (denoted $X \perp Y$) if $\mathbf{x} \cdot \mathbf{y}=0$ for any $\mathbf{x} \in X$ and $\mathbf{y} \in Y$.

Orthogonal complement

Definition. Let $S \subset \mathbb{R}^{n}$. The orthogonal complement of S, denoted S^{\perp}, is the set of all vectors $\mathbf{x} \in \mathbb{R}^{n}$ that are orthogonal to S.

Theorem 1 (i) S^{\perp} is a subspace of \mathbb{R}^{n}.
(ii) $\operatorname{Span}(S)^{\perp}=S^{\perp}$.
(iii) $\left(S^{\perp}\right)^{\perp}=\operatorname{Span}(S)$.

Theorem 2 If V is a subspace of \mathbb{R}^{n}, then
(i) $\left(V^{\perp}\right)^{\perp}=V$,
(ii) $V \cap V^{\perp}=\{0\}$.

Fundamental subspaces

Definition. Given an $m \times n$ matrix A, let

$$
\begin{aligned}
& N(A)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\} \\
& R(A)=\left\{\mathbf{b} \in \mathbb{R}^{m} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

$R(A)$ is the range of a linear mapping $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, $L(\mathbf{x})=A \mathbf{x} . \quad N(A)$ is the kernel of L.
Also, $N(A)$ is the nullspace of the matrix A while $R(A)$ is the column space of A. The row space of A is $R\left(A^{T}\right)$.
The subspaces $N(A), R\left(A^{T}\right) \subset \mathbb{R}^{n}$ and $R(A), N\left(A^{T}\right) \subset \mathbb{R}^{m}$ are fundamental subspaces associated to the matrix A.

Theorem $\quad N(A)=R\left(A^{T}\right)^{\perp}, \quad N\left(A^{T}\right)=R(A)^{\perp}$. That is, the nullspace of a matrix is the orthogonal complement of its row space.
Proof: The equality $A \mathbf{x}=\mathbf{0}$ means that the vector \mathbf{x} is orthogonal to rows of the matrix A. Therefore $N(A)=S^{\perp}$, where S is the set of rows of A. It remains to note that $S^{\perp}=\operatorname{Span}(S)^{\perp}=R\left(A^{T}\right)^{\perp}$.

Corollary Let V be a subspace of \mathbb{R}^{n}. Then $\operatorname{dim} V+\operatorname{dim} V^{\perp}=n$.
Proof: Pick a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ for V. Let A be the $k \times n$ matrix whose rows are vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$. Then $V=R\left(A^{T}\right)$, hence $V^{\perp}=N(A)$. Consequently, $\operatorname{dim} V$ and $\operatorname{dim} V^{\perp}$ are rank and nullity of A. Therefore $\operatorname{dim} V+\operatorname{dim} V^{\perp}$ equals the number of columns of A, which is n.

Orthogonal projection

Theorem 1 Let V be a subspace of \mathbb{R}^{n}. Then any vector $\mathbf{x} \in \mathbb{R}^{n}$ is uniquely represented as
$\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in V$ and $\mathbf{o} \in V^{\perp}$.
Idea of the proof: Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be a basis for V and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ be a basis for V^{\perp}. Then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ is a basis for \mathbb{R}^{n}.

In the above expansion, \mathbf{p} is called the orthogonal projection of the vector \mathbf{x} onto the subspace V.

Theorem $2\|\mathbf{x}-\mathbf{v}\|>\|\mathbf{x}-\mathbf{p}\|$ for any $\mathbf{v} \neq \mathbf{p}$ in V.
Thus $\|\mathbf{o}\|=\|\mathbf{x}-\mathbf{p}\|=\min _{\mathbf{v} \in V}\|\mathbf{x}-\mathbf{v}\|$ is the
distance from the vector \mathbf{x} to the subspace V.

Orthogonal projection onto a vector

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, with $\mathbf{y} \neq \mathbf{0}$.
Then there exists a unique decomposition $\mathbf{x}=\mathbf{p}+\mathbf{o}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y}.

$\mathbf{p}=$ orthogonal projection of \mathbf{x} onto \mathbf{y}

Orthogonal projection onto a vector

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, with $\mathbf{y} \neq \mathbf{0}$.
Then there exists a unique decomposition $\mathbf{x}=\mathbf{p}+\mathbf{o}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y}.

We have $\mathbf{p}=\alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$. Then

$$
\begin{aligned}
& 0=\mathbf{o} \cdot \mathbf{y}=(\mathbf{x}-\alpha \mathbf{y}) \cdot \mathbf{y}=\mathbf{x} \cdot \mathbf{y}-\alpha \mathbf{y} \cdot \mathbf{y} . \\
\Longrightarrow & \alpha=\frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \Longrightarrow
\end{aligned}
$$

Problem. Find the distance from the point $\mathbf{x}=(3,1)$ to the line spanned by $\mathbf{y}=(2,-1)$.

Consider the decomposition $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where \mathbf{p} is parallel to \mathbf{y} while $\mathbf{o} \perp \mathbf{y}$. The required distance is the length of the orthogonal component \mathbf{o}.
$\mathbf{p}=\frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}=\frac{5}{5}(2,-1)=(2,-1)$,
$\mathbf{o}=\mathbf{x}-\mathbf{p}=(3,1)-(2,-1)=(1,2), \quad\|\mathbf{o}\|=\sqrt{5}$.
Problem. Find the point on the line $y=-x$ that is closest to the point $(3,4)$.

The required point is the projection \mathbf{p} of $\mathbf{v}=(3,4)$ on the vector $\mathbf{w}=(1,-1)$ spanning the line $y=-x$.

$$
\mathbf{p}=\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}=\frac{-1}{2}(1,-1)=\left(-\frac{1}{2}, \frac{1}{2}\right)
$$

Problem. Let Π be the plane spanned by vectors $\mathbf{v}_{1}=(1,1,0)$ and $\mathbf{v}_{2}=(0,1,1)$.
(i) Find the orthogonal projection of the vector $\mathbf{x}=(4,0,-1)$ onto the plane Π.
(ii) Find the distance from x to Π.

We have $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in \Pi$ and $\mathbf{o} \perp \Pi$.
Then the orthogonal projection of \mathbf{x} onto Π is \mathbf{p} and the distance from \mathbf{x} to Π is $\|\mathbf{o}\|$.
We have $\mathbf{p}=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}$ for some $\alpha, \beta \in \mathbb{R}$.
Then $\mathbf{o}=\mathbf{x}-\mathbf{p}=\mathbf{x}-\alpha \mathbf{v}_{1}-\beta \mathbf{v}_{2}$.
$\left\{\begin{array}{l}\mathbf{o} \cdot \mathbf{v}_{1}=0 \\ \mathbf{o} \cdot \mathbf{v}_{2}=0\end{array} \Longleftrightarrow\left\{\begin{array}{l}\alpha\left(\mathbf{v}_{1} \cdot \mathbf{v}_{1}\right)+\beta\left(\mathbf{v}_{2} \cdot \mathbf{v}_{1}\right)=\mathbf{x} \cdot \mathbf{v}_{1} \\ \alpha\left(\mathbf{v}_{1} \cdot \mathbf{v}_{2}\right)+\beta\left(\mathbf{v}_{2} \cdot \mathbf{v}_{2}\right)=\mathbf{x} \cdot \mathbf{v}_{2}\end{array}\right.\right.$

$$
\mathbf{x}=(4,0,-1), \quad \mathbf{v}_{1}=(1,1,0), \quad \mathbf{v}_{2}=(0,1,1)
$$

$$
\left\{\begin{array}{l}
\alpha\left(\mathbf{v}_{1} \cdot \mathbf{v}_{1}\right)+\beta\left(\mathbf{v}_{2} \cdot \mathbf{v}_{1}\right)=\mathbf{x} \cdot \mathbf{v}_{1} \\
\alpha\left(\mathbf{v}_{1} \cdot \mathbf{v}_{2}\right)+\beta\left(\mathbf{v}_{2} \cdot \mathbf{v}_{2}\right)=\mathbf{x} \cdot \mathbf{v}_{2}
\end{array}\right.
$$

$$
\Longleftrightarrow\left\{\begin{array} { l }
{ 2 \alpha + \beta = 4 } \\
{ \alpha + 2 \beta = - 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\alpha=3 \\
\beta=-2
\end{array}\right.\right.
$$

$$
\mathbf{p}=3 \mathbf{v}_{1}-2 \mathbf{v}_{2}=(3,1,-2)
$$

$$
\mathbf{o}=\mathbf{x}-\mathbf{p}=(1,-1,1)
$$

$$
\|\mathbf{o}\|=\sqrt{3}
$$

Problem. Let Π be the plane spanned by vectors $\mathbf{v}_{1}=(1,1,0)$ and $\mathbf{v}_{2}=(0,1,1)$.
(i) Find the orthogonal projection of the vector $\mathbf{x}=(4,0,-1)$ onto the plane Π.
(ii) Find the distance from x to Π.

Alternative solution: We have $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in \Pi$ and $\mathbf{o} \perp \Pi$. Then the orthogonal projection of \mathbf{x} onto Π is \mathbf{p} and the distance from \mathbf{x} to Π is $\|\mathbf{o}\|$.
Notice that \mathbf{o} is the orthogonal projection of \mathbf{x} onto the orthogonal complement Π^{\perp}. In the previous lecture, we found that Π^{\perp} is the line spanned by the vector $\mathbf{y}=(1,-1,1)$. It follows that

$$
\mathbf{o}=\frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}=\frac{3}{3}(1,-1,1)=(1,-1,1) .
$$

Then $\mathbf{p}=\mathbf{x}-\mathbf{o}=(4,0,-1)-(1,-1,1)=(3,1,-2)$ and $\|\mathbf{o}\|=\sqrt{3}$.

Overdetermined system of linear equations:
$\left\{\begin{array}{l}x+2 y=3 \\ 3 x+2 y=5 \\ x+y=2.09\end{array}\right.$
$\Longleftrightarrow\left\{\begin{array}{l}x+2 y=3 \\ -4 y=-4 \\ -y=-0.91\end{array}\right.$
No solution: inconsistent system
Assume that a solution $\left(x_{0}, y_{0}\right)$ does exist but the system is not quite accurate, namely, there may be some errors in the right-hand sides.

Problem. Find a good approximation of $\left(x_{0}, y_{0}\right)$.
One approach is the least squares fit. Namely, we look for a pair (x, y) that minimizes the sum $(x+2 y-3)^{2}+(3 x+2 y-5)^{2}+(x+y-2.09)^{2}$.

Least squares solution

System of linear equations:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots \cdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array} \Longleftrightarrow A \mathbf{x}=\mathbf{b}\right.
$$

For any $\mathbf{x} \in \mathbb{R}^{n}$ define a residual $r(\mathbf{x})=\mathbf{b}-A \mathbf{x}$.
The least squares solution x to the system is the one that minimizes $\|r(\mathbf{x})\|$ (or, equivalently, $\|r(\mathbf{x})\|^{2}$).

$$
\|r(\mathbf{x})\|^{2}=\sum_{i=1}^{m}\left(a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}-b_{i}\right)^{2}
$$

Let A be an $m \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^{m}$.
Theorem A vector \hat{x} is a least squares solution of the system $A \mathbf{x}=\mathbf{b}$ if and only if it is a solution of the associated normal system $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.

Proof: $\quad A \mathbf{x}$ is an arbitrary vector in $R(A)$, the column space of A. Hence the length of $r(\mathbf{x})=\mathbf{b}-A \mathbf{x}$ is minimal if $A \mathbf{x}$ is the orthogonal projection of \mathbf{b} onto $R(A)$. That is, if $r(\mathbf{x})$ is orthogonal to $R(A)$.
We know that $R(A)^{\perp}=N\left(A^{T}\right)$, the nullspace of the transpose matrix. Thus $\hat{\mathrm{x}}$ is a least squares solution if and only if

$$
A^{T} r(\hat{\mathbf{x}})=\mathbf{0} \Longleftrightarrow A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0} \Longleftrightarrow A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b} .
$$

Problem. Find the least squares solution to

$$
\left\{\begin{array}{l}
x+2 y=3 \\
3 x+2 y=5 \\
x+y=2.09
\end{array}\right.
$$

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 2 \\
1 & 1
\end{array}\right)\binom{x}{y}=\left(\begin{array}{c}
3 \\
5 \\
2.09
\end{array}\right)
$$

$\left(\begin{array}{lll}1 & 3 & 1 \\ 2 & 2 & 1\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 3 & 2 \\ 1 & 1\end{array}\right)\binom{x}{y}=\left(\begin{array}{lll}1 & 3 & 1 \\ 2 & 2 & 1\end{array}\right)\left(\begin{array}{c}3 \\ 5 \\ 2.09\end{array}\right)$
$\left(\begin{array}{cc}11 & 9 \\ 9 & 9\end{array}\right)\binom{x}{y}=\binom{20.09}{18.09} \Longleftrightarrow\left\{\begin{array}{l}x=1 \\ y=1.01\end{array}\right.$

