MATH 304
Linear Algebra

Lecture 21:
The Gram-Schmidt orthogonalization process.
Eigenvalues and eigenvectors of a matrix.
Orthogonal sets

Let V be a vector space with an inner product.

Definition. Nonzero vectors $v_1, v_2, \ldots, v_k \in V$ form an **orthogonal set** if they are orthogonal to each other: $\langle v_i, v_j \rangle = 0$ for $i \neq j$.

If, in addition, all vectors are of unit norm, $\|v_i\| = 1$, then v_1, v_2, \ldots, v_k is called an **orthonormal set**.

Theorem Any orthogonal set is linearly independent.
Orthogonal projection

Theorem Let V be an inner product space and V_0 be a finite-dimensional subspace of V. Then any vector $x \in V$ is uniquely represented as $x = p + o$, where $p \in V_0$ and $o \perp V_0$.

The component p is the **orthogonal projection** of the vector x onto the subspace V_0. The distance from x to the subspace V_0 is $\|o\|$.

If v_1, v_2, \ldots, v_n is an orthogonal basis for V_0 then

$$p = \frac{\langle x, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \frac{\langle x, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 + \cdots + \frac{\langle x, v_n \rangle}{\langle v_n, v_n \rangle} v_n.$$
The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product. Suppose x_1, x_2, \ldots, x_n is a basis for V. Let

$$v_1 = x_1,$$
$$v_2 = x_2 - \frac{\langle x_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1,$$
$$v_3 = x_3 - \frac{\langle x_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle x_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2,$$
$$\vdots$$
$$v_n = x_n - \frac{\langle x_n, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \cdots - \frac{\langle x_n, v_{n-1} \rangle}{\langle v_{n-1}, v_{n-1} \rangle} v_{n-1}.$$

Then v_1, v_2, \ldots, v_n is an orthogonal basis for V.
\[\text{Span}(v_1, v_2) = \text{Span}(x_1, x_2) \]
Properties of the Gram-Schmidt process:

- \(\mathbf{v}_k = \mathbf{x}_k - (\alpha_1 \mathbf{x}_1 + \cdots + \alpha_{k-1} \mathbf{x}_{k-1}) \), \(1 \leq k \leq n \);
- the span of \(\mathbf{v}_1, \ldots, \mathbf{v}_k \) is the same as the span of \(\mathbf{x}_1, \ldots, \mathbf{x}_k \);
- \(\mathbf{v}_k \) is orthogonal to \(\mathbf{x}_1, \ldots, \mathbf{x}_{k-1} \);
- \(\mathbf{v}_k = \mathbf{x}_k - \mathbf{p}_k \), where \(\mathbf{p}_k \) is the orthogonal projection of the vector \(\mathbf{x}_k \) on the subspace spanned by \(\mathbf{x}_1, \ldots, \mathbf{x}_{k-1} \);
- \(\|\mathbf{v}_k\| \) is the distance from \(\mathbf{x}_k \) to the subspace spanned by \(\mathbf{x}_1, \ldots, \mathbf{x}_{k-1} \).
Normalization

Let V be a vector space with an inner product. Suppose v_1, v_2, \ldots, v_n is an orthogonal basis for V. Let $w_1 = \frac{v_1}{\|v_1\|}$, $w_2 = \frac{v_2}{\|v_2\|}$, \ldots, $w_n = \frac{v_n}{\|v_n\|}$. Then w_1, w_2, \ldots, w_n is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with an inner product may or may not have an orthonormal basis.
Orthogonalization / Normalization

An alternative form of the Gram-Schmidt process combines orthogonalization with normalization.

Suppose \(x_1, x_2, \ldots, x_n \) is a basis for an inner product space \(V \). Let

\[
\begin{align*}
v_1 &= x_1, \\
w_1 &= \frac{v_1}{\|v_1\|}, \\
v_2 &= x_2 - \langle x_2, w_1 \rangle w_1, \\
w_2 &= \frac{v_2}{\|v_2\|}, \\
v_3 &= x_3 - \langle x_3, w_1 \rangle w_1 - \langle x_3, w_2 \rangle w_2, \\
w_3 &= \frac{v_3}{\|v_3\|}, \\
&
\end{align*}
\]

\[
\begin{align*}
v_n &= x_n - \langle x_n, w_1 \rangle w_1 - \cdots - \langle x_n, w_{n-1} \rangle w_{n-1}, \\
w_n &= \frac{v_n}{\|v_n\|}. \\
\end{align*}
\]

Then \(w_1, w_2, \ldots, w_n \) is an orthonormal basis for \(V \).
Problem. Let V_0 be a subspace of dimension k in \mathbb{R}^n. Let x_1, x_2, \ldots, x_k be a basis for V_0.

(i) Find an orthogonal basis for V_0.

(ii) Extend it to an orthogonal basis for \mathbb{R}^n.

Approach 1. Extend x_1, \ldots, x_k to a basis x_1, x_2, \ldots, x_n for \mathbb{R}^n. Then apply the Gram-Schmidt process to the extended basis. We shall obtain an orthogonal basis v_1, \ldots, v_n for \mathbb{R}^n. By construction, $\text{Span}(v_1, \ldots, v_k) = \text{Span}(x_1, \ldots, x_k) = V_0$. It follows that v_1, \ldots, v_k is a basis for V_0. Clearly, it is orthogonal.

Approach 2. First apply the Gram-Schmidt process to x_1, \ldots, x_k and obtain an orthogonal basis v_1, \ldots, v_k for V_0. Secondly, find a basis y_1, \ldots, y_m for the orthogonal complement V_0^\perp and apply the Gram-Schmidt process to it obtaining an orthogonal basis u_1, \ldots, u_m for V_0^\perp. Then $v_1, \ldots, v_k, u_1, \ldots, u_m$ is an orthogonal basis for \mathbb{R}^n.

Problem. Let Π be the plane in \(\mathbb{R}^3 \) spanned by vectors \(\mathbf{x}_1 = (1, 2, 2) \) and \(\mathbf{x}_2 = (-1, 0, 2) \).

(i) Find an orthonormal basis for Π.

(ii) Extend it to an orthonormal basis for \(\mathbb{R}^3 \).

\(\mathbf{x}_1, \mathbf{x}_2 \) is a basis for the plane Π. We can extend it to a basis for \(\mathbb{R}^3 \) by adding one vector from the standard basis. For instance, vectors \(\mathbf{x}_1, \mathbf{x}_2, \) and \(\mathbf{x}_3 = (0, 0, 1) \) form a basis for \(\mathbb{R}^3 \) because

\[
\begin{vmatrix}
1 & 2 & 2 \\
-1 & 0 & 2 \\
0 & 0 & 1
\end{vmatrix}
= \begin{vmatrix}
1 & 2 \\
-1 & 0
\end{vmatrix}
= 2 \neq 0.
\]
Using the Gram-Schmidt process, we orthogonalize the basis \(x_1 = (1, 2, 2), x_2 = (-1, 0, 2), x_3 = (0, 0, 1) \):

\[v_1 = x_1 = (1, 2, 2), \]

\[v_2 = x_2 - \frac{\langle x_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 = (-1, 0, 2) - \frac{3}{9} (1, 2, 2) \]

\[= (-4/3, -2/3, 4/3), \]

\[v_3 = x_3 - \frac{\langle x_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle x_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 \]

\[= (0, 0, 1) - \frac{2}{9} (1, 2, 2) - \frac{4/3}{4} (-4/3, -2/3, 4/3) \]

\[= (2/9, -2/9, 1/9). \]
Now \(\mathbf{v}_1 = (1, 2, 2), \mathbf{v}_2 = (-4/3, -2/3, 4/3), \mathbf{v}_3 = (2/9, -2/9, 1/9) \) is an orthogonal basis for \(\mathbb{R}^3 \) while \(\mathbf{v}_1, \mathbf{v}_2 \) is an orthogonal basis for \(\Pi \). It remains to normalize these vectors.

\[
\langle \mathbf{v}_1, \mathbf{v}_1 \rangle = 9 \quad \implies \quad \| \mathbf{v}_1 \| = 3
\]
\[
\langle \mathbf{v}_2, \mathbf{v}_2 \rangle = 4 \quad \implies \quad \| \mathbf{v}_2 \| = 2
\]
\[
\langle \mathbf{v}_3, \mathbf{v}_3 \rangle = 1/9 \quad \implies \quad \| \mathbf{v}_3 \| = 1/3
\]

\[
\mathbf{w}_1 = \mathbf{v}_1/\| \mathbf{v}_1 \| = (1/3, 2/3, 2/3) = \frac{1}{3}(1, 2, 2),
\]
\[
\mathbf{w}_2 = \mathbf{v}_2/\| \mathbf{v}_2 \| = (-2/3, -1/3, 2/3) = \frac{1}{3}(-2, -1, 2),
\]
\[
\mathbf{w}_3 = \mathbf{v}_3/\| \mathbf{v}_3 \| = (2/3, -2/3, 1/3) = \frac{1}{3}(2, -2, 1).
\]

\(\mathbf{w}_1, \mathbf{w}_2 \) is an orthonormal basis for \(\Pi \).
\(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3 \) is an orthonormal basis for \(\mathbb{R}^3 \).
Problem. Find the distance from the point \(y = (0, 0, 0, 1) \) to the subspace \(V \subset \mathbb{R}^4 \) spanned by vectors \(x_1 = (1, -1, 1, -1), \ x_2 = (1, 1, 3, -1), \) and \(x_3 = (-3, 7, 1, 3). \)

Let us apply the Gram-Schmidt process to vectors \(x_1, x_2, x_3, y. \) We should obtain an orthogonal system \(v_1, v_2, v_3, v_4. \) The desired distance will be \(|v_4|. \)
\[\mathbf{x}_1 = (1, -1, 1, -1), \quad \mathbf{x}_2 = (1, 1, 3, -1), \quad \mathbf{x}_3 = (-3, 7, 1, 3), \quad \mathbf{y} = (0, 0, 0, 1). \]

\[\mathbf{v}_1 = \mathbf{x}_1 = (1, -1, 1, -1), \]

\[\mathbf{v}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (1, 1, 3, -1) - \frac{4}{4}(1, -1, 1, -1) \]

\[= (0, 2, 2, 0), \]

\[\mathbf{v}_3 = \mathbf{x}_3 - \frac{\langle \mathbf{x}_3, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{x}_3, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 \]

\[= (-3, 7, 1, 3) - \frac{-12}{4}(1, -1, 1, -1) - \frac{16}{8}(0, 2, 2, 0) \]

\[= (0, 0, 0, 0). \]
The Gram-Schmidt process can be used to check linear independence of vectors!

The vector \mathbf{x}_3 is a linear combination of \mathbf{x}_1 and \mathbf{x}_2. V is a plane, not a 3-dimensional subspace. We should orthogonalize vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}$.

\[
\mathbf{v}_3 = \mathbf{y} - \frac{\langle \mathbf{y}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{y}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2
\]

\[
= (0, 0, 0, 1) - \frac{-1}{4} (1, -1, 1, -1) - \frac{0}{8} (0, 2, 2, 0)
\]

\[
= (1/4, -1/4, 1/4, 3/4).
\]

\[
|\mathbf{v}_3| = \left| \left(\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right) \right| = \frac{1}{4} |(1, -1, 1, 3)| = \frac{\sqrt{12}}{4} = \frac{\sqrt{3}}{2}.
\]
Problem. Find the distance from the point \(z = (0, 0, 1, 0) \) to the plane \(\Pi \) that passes through the point \(x_0 = (1, 0, 0, 0) \) and is parallel to the vectors \(v_1 = (1, -1, 1, -1) \) and \(v_2 = (0, 2, 2, 0) \).

The plane \(\Pi \) is not a subspace of \(\mathbb{R}^4 \) as it does not pass through the origin. Let \(\Pi_0 = \text{Span}(v_1, v_2) \). Then \(\Pi = \Pi_0 + x_0 \).

Hence the distance from the point \(z \) to the plane \(\Pi \) is the same as the distance from the point \(z - x_0 \) to the plane \(\Pi_0 \).

We shall apply the Gram-Schmidt process to vectors \(v_1, v_2, z - x_0 \). This will yield an orthogonal system \(w_1, w_2, w_3 \). The desired distance will be \(|w_3| \).
\(\mathbf{v}_1 = (1, -1, 1, -1), \quad \mathbf{v}_2 = (0, 2, 2, 0), \quad \mathbf{z} - \mathbf{x}_0 = (-1, 0, 1, 0). \)

\[\mathbf{w}_1 = \mathbf{v}_1 = (1, -1, 1, -1), \]

\[\mathbf{w}_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 = \mathbf{v}_2 = (0, 2, 2, 0) \text{ as } \mathbf{v}_2 \perp \mathbf{v}_1. \]

\[\mathbf{w}_3 = (\mathbf{z} - \mathbf{x}_0) - \frac{\langle \mathbf{z} - \mathbf{x}_0, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 - \frac{\langle \mathbf{z} - \mathbf{x}_0, \mathbf{w}_2 \rangle}{\langle \mathbf{w}_2, \mathbf{w}_2 \rangle} \mathbf{w}_2 \]

\[= (-1, 0, 1, 0) - \frac{0}{4} (1, -1, 1, -1) - \frac{2}{8} (0, 2, 2, 0) \]

\[= (-1, -1/2, 1/2, 0). \]

\[|\mathbf{w}_3| = \left| \left(-1, -\frac{1}{2}, \frac{1}{2}, 0 \right) \right| = \frac{1}{2} \left| (-2, -1, 1, 0) \right| = \frac{\sqrt{6}}{2} = \sqrt{3}. \]
Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an eigenvalue of the matrix A if $Av = \lambda v$ for a nonzero column vector $v \in \mathbb{R}^n$. The vector v is called an eigenvector of A belonging to (or associated with) the eigenvalue λ.

Remarks. • Alternative notation: eigenvalue = characteristic value, eigenvector = characteristic vector. • The zero vector is never considered an eigenvector.
Example. \(A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \).

\[
\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix},
\]

\[
\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -6 \end{pmatrix} = 3 \begin{pmatrix} 0 \\ -2 \end{pmatrix}.
\]

Hence \((1, 0)\) is an eigenvector of \(A \) belonging to the eigenvalue 2, while \((0, -2)\) is an eigenvector of \(A \) belonging to the eigenvalue 3.
Example. \(A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \).

\[
\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.
\]

Hence \((1, 1)\) is an eigenvector of \(A \) belonging to the eigenvalue 1, while \((1, -1)\) is an eigenvector of \(A \) belonging to the eigenvalue \(-1\).

Vectors \(\mathbf{v}_1 = (1, 1) \) and \(\mathbf{v}_2 = (1, -1) \) form a basis for \(\mathbb{R}^2 \). Consider a linear operator \(L : \mathbb{R}^2 \to \mathbb{R}^2 \) given by \(L(\mathbf{x}) = A\mathbf{x} \). The matrix of \(L \) with respect to the basis \(\mathbf{v}_1, \mathbf{v}_2 \) is \(B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \).
Let A be an $n \times n$ matrix. Consider a linear operator $L : \mathbb{R}^n \rightarrow \mathbb{R}^n$ given by $L(x) = Ax$.

Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ be a nonstandard basis for \mathbb{R}^n and B be the matrix of the operator L with respect to this basis.

Theorem The matrix B is diagonal if and only if vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are eigenvectors of A.

If this is the case, then the diagonal entries of the matrix B are the corresponding eigenvalues of A.

$$A \mathbf{v}_i = \lambda_i \mathbf{v}_i \iff B = \begin{pmatrix} \lambda_1 & & O \\ & \lambda_2 & \\ O & \ddots & \ddots \end{pmatrix}$$