MATH 304

Lecture 25: Complex eigenvalues and eigenvectors.

Linear Algebra

Orthogonal matrices.

Orthogonal matrices.
Rotations in space.

Complex numbers

 \mathbb{C} : complex numbers.

Complex number:
$$\boxed{z=x+iy,}$$
 where $x,y\in\mathbb{R}$ and $i^2=-1.$

$$i = \sqrt{-1}$$
: imaginary unit

Alternative notation: z = x + yi.

$$x = \text{real part of } z$$
,
 $iy = \text{imaginary part of } z$

$$y = 0 \implies z = x$$
 (real number)
 $x = 0 \implies z = iy$ (purely imaginary number)

We add, subtract, and multiply complex numbers as polynomials in i (but keep in mind that $i^2 = -1$). If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, then

If
$$z_1 = x_1 + iy_1$$
 and $z_2 = x_2 + iy_2$, then $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$, $z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2)$,

Given z = x + iy, the **complex conjugate** of z is $\overline{z} = x - iy$. The **modulus** of z is $|z| = \sqrt{x^2 + y^2}$

 $z_1z_2=(x_1x_2-y_1y_2)+i(x_1y_2+x_2y_1).$

$$\bar{z} = x - iy$$
. The **modulus** of z is $|z| = \sqrt{x^2 + y^2}$. $z\bar{z} = (x + iy)(x - iy) = x^2 - (iy)^2 = x^2 + y^2 = |z|^2$.

$$z^{-1} = \frac{\bar{z}}{|z|^2}, \qquad (x+iy)^{-1} = \frac{x-iy}{x^2+y^2}.$$

Geometric representation

Any complex number z = x + iy is represented by the vector/point $(x, y) \in \mathbb{R}^2$.

$$x = r \cos \phi, \ y = r \sin \phi \implies z = r(\cos \phi + i \sin \phi) = re^{i\phi}$$

If $z_1 = r_1 e^{i\phi_1}$ and $z_2 = r_2 e^{i\phi_2}$, then $z_1 z_2 = r_1 r_2 e^{i(\phi_1 + \phi_2)}, \ z_1/z_2 = (r_1/r_2)e^{i(\phi_1 - \phi_2)}.$

Fundamental Theorem of Algebra

Any polynomial of degree $n \ge 1$, with complex coefficients, has exactly n roots (counting with multiplicities).

Equivalently, if

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0,$$

where $a_i \in \mathbb{C}$ and $a_n \neq 0$, then there exist complex numbers z_1, z_2, \ldots, z_n such that

$$p(z) = a_n(z - z_1)(z - z_2) \dots (z - z_n).$$

Complex eigenvalues/eigenvectors

Example.
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
. $det(A - \lambda I) = \lambda^2 + 1$.

Characteristic roots: $\lambda_1 = i$ and $\lambda_2 = -i$.

Associated eigenvectors:
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -i \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} 1 \\ i \end{pmatrix}$.

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -i \end{pmatrix} = \begin{pmatrix} i \\ 1 \end{pmatrix} = i \begin{pmatrix} 1 \\ -i \end{pmatrix},$$

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix} = \begin{pmatrix} -i \\ 1 \end{pmatrix} = -i \begin{pmatrix} 1 \\ i \end{pmatrix}.$$

 \mathbf{v}_1 , \mathbf{v}_2 is a basis of eigenvectors. *In which space?*

Complexification

Instead of the real vector space \mathbb{R}^2 , we consider a complex vector space \mathbb{C}^2 (all complex numbers are admissible as scalars).

The linear operator $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(\mathbf{x}) = A\mathbf{x}$ is extended to a *complex linear operator* $F: \mathbb{C}^2 \to \mathbb{C}^2$

 $F: \mathbb{C}^2 \to \mathbb{C}^2, \ F(\mathbf{x}) = A\mathbf{x}.$

The vectors $\mathbf{v}_1 = (1, -i)$ and $\mathbf{v}_2 = (1, i)$ form a basis for \mathbb{C}^2 .

 \mathbb{C}^2 is also a real vector space (of real dimension 4). The standard real basis for \mathbb{C}^2 is $\mathbf{e}_1=(1,0)$, $\mathbf{e}_2=(0,1)$, $i\mathbf{e}_1=(i,0)$, $i\mathbf{e}_2=(0,i)$. The matrix of the operator F with respect to this basis has the block structure $\begin{pmatrix} A & O \\ O & A \end{pmatrix}$.

Dot product of complex vectors

Dot product of real vectors

$$\mathbf{x} = (x_1, \ldots, x_n), \ \mathbf{y} = (y_1, \ldots, y_n) \in \mathbb{R}^n$$
:

$$\mathbf{x}\cdot\mathbf{y}=x_1y_1+x_2y_2+\cdots+x_ny_n.$$

Dot product of complex vectors

$$\mathbf{x} = (x_1, \dots, x_n), \ \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{C}^n$$
:
 $\mathbf{x} \cdot \mathbf{v} = x_1 \overline{v_1} + x_2 \overline{v_2} + \dots + x_n \overline{v_n}$.

If
$$z = r + it$$
 $(t, s \in \mathbb{R})$ then $\overline{z} = r - it$, $z\overline{z} = r^2 + t^2 = |z|^2$.

Hence
$$\mathbf{x} \cdot \mathbf{x} = |x_1|^2 + |x_2|^2 + \cdots + |x_n|^2 \ge 0$$
.

Also,
$$\mathbf{x} \cdot \mathbf{x} = 0$$
 if and only if $\mathbf{x} = \mathbf{0}$.

The norm is defined by $\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$.

Normal matrices

Definition. An $n \times n$ matrix A is called

- symmetric if $A^T = A$;
- orthogonal if $AA^T = A^TA = I$, i.e., $A^T = A^{-1}$;
- **normal** if $AA^T = A^TA$.

Theorem Let A be an $n \times n$ matrix with real entries. Then

- (a) A is normal \iff there exists an orthonormal basis for \mathbb{C}^n consisting of eigenvectors of A;
- **(b)** A is symmetric \iff there exists an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A.

Example.
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
.

- `
- A is symmetric. A has three eigenvalues: 0, 2, and 3.
- Associated eigenvectors are $\mathbf{v}_1 = (-1, 0, 1)$,
- ${f v}_2=(1,0,1), \ {\sf and} \ {f v}_3=(0,1,0), \ {\sf respectively}.$
- Vectors $\frac{1}{\sqrt{2}}\mathbf{v}_1, \frac{1}{\sqrt{2}}\mathbf{v}_2, \mathbf{v}_3$ form an orthonormal basis for \mathbb{R}^3

Theorem Suppose A is a normal matrix. Then for any $\mathbf{x} \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$ one has

$$A\mathbf{x} = \lambda \mathbf{x} \iff A^T \mathbf{x} = \overline{\lambda} \mathbf{x}.$$

Thus any normal matrix A shares with A^T all real eigenvalues and the corresponding eigenvectors. Also, $A\mathbf{x} = \lambda \mathbf{x} \iff A\overline{\mathbf{x}} = \overline{\lambda} \, \overline{\mathbf{x}}$ for any matrix A with real entries.

Corollary All eigenvalues λ of a symmetric matrix are real $(\overline{\lambda} = \lambda)$. All eigenvalues λ of an orthogonal matrix satisfy $\overline{\lambda} = \lambda^{-1} \iff |\lambda| = 1$.

Why are orthogonal matrices called so?

Theorem Given an $n \times n$ matrix A, the following conditions are equivalent:

- (i) A is orthogonal: $A^T = A^{-1}$;
- (ii) columns of A form an orthonormal basis for \mathbb{R}^n ;
- (iii) rows of A form an orthonormal basis for \mathbb{R}^n .

Proof: Entries of the matrix A^TA are dot products of columns of A. Entries of AA^T are dot products of rows of A.

In particular, an orthogonal matrix is the transition matrix from one orthonormal basis to another.

Example. $A_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$.

•
$$A_{\phi}A_{\psi} = A_{\phi+\psi}$$

• $A_{\phi}^{-1} = A_{-\phi} = A_{\phi}^{T}$

- ullet A_ϕ is orthogonal
- $\det(A_{\phi} \lambda I) = (\cos \phi \lambda)^2 + \sin^2 \phi$.
- Eigenvalues: $\lambda_1 = \cos \phi + i \sin \phi = e^{i\phi}$, $\lambda_2 = \cos \phi i \sin \phi = e^{-i\phi}$.
- Associated eigenvectors: $\mathbf{v}_1 = (1, -i)$, $\mathbf{v}_2 = (1, i)$.
- Vectors $\frac{1}{\sqrt{2}}\mathbf{v}_1$ and $\frac{1}{\sqrt{2}}\mathbf{v}_2$ form an orthonormal basis for \mathbb{C}^2 .

Consider a linear operator $L: \mathbb{R}^n \to \mathbb{R}^n$, $L(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ matrix

Theorem The following conditions are equivalent:

- (i) $|L(\mathbf{x})| = |\mathbf{x}|$ for all $\mathbf{x} \in \mathbb{R}^n$;
- (ii) $L(\mathbf{x}) \cdot L(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$; (iii) the matrix A is orthogonal.

Definition. A transformation $f : \mathbb{R}^n \to \mathbb{R}^n$ is called an **isometry** if it preserves distances between points: $|f(\mathbf{x}) - f(\mathbf{y})| = |\mathbf{x} - \mathbf{y}|$.

Theorem Any isometry $f : \mathbb{R}^n \to \mathbb{R}^n$ can be represented as $f(\mathbf{x}) = A\mathbf{x} + \mathbf{x}_0$, where $\mathbf{x}_0 \in \mathbb{R}^n$ and A is an orthogonal matrix.

Consider a linear operator $L: \mathbb{R}^n \to \mathbb{R}^n$, $L(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ orthogonal matrix.

Theorem There exists an orthonormal basis for \mathbb{R}^n such that the matrix of L relative to this basis has the diagonal block structure

$$\begin{pmatrix} D_{\pm 1} & O & \dots & O \\ O & R_1 & \dots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \dots & R_k \end{pmatrix},$$

where $D_{\pm 1}$ is a diagonal matrix whose diagonal entries are equal to 1 or -1, and

$$R_j = \begin{pmatrix} \cos \phi_j & -\sin \phi_j \\ \sin \phi_i & \cos \phi_i \end{pmatrix}, \quad \phi_j \in \mathbb{R}.$$

Classification of 2×2 orthogonal matrices:

Eigenvalues: $e^{i\phi}$ and $e^{-i\phi}$

$$\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \qquad \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 rotation reflection about the origin in a line

-1 and 1

Classification of 3×3 orthogonal matrices:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$C = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{pmatrix}.$$

$$A = \text{rotation about a line; } B = \text{reflection in a}$$
 plane;
$$C = \text{rotation about a line combined with}$$

reflection in the orthogonal plane.

det A=1, det $B=\det C=-1$. A has eigenvalues $1, e^{i\phi}, e^{-i\phi}$. B has eigenvalues -1, 1, 1. C has eigenvalues $-1, e^{i\phi}, e^{-i\phi}$.

Rotations in space

If the axis of rotation is oriented, we can say about *clockwise* or *counterclockwise* rotations (with respect to the view from the positive semi-axis).

Clockwise rotations about coordinate axes

$$\begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix}$$

Problem. Find the matrix of the rotation by 90° about the line spanned by the vector $\mathbf{a} = (1, 2, 2)$. The rotation is assumed to be counterclockwise when looking from the tip of \mathbf{a} .

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$
 is the matrix of (counterclockwise) rotation by 90° about the x-axis.

We need to find an orthonormal basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ such that \mathbf{v}_1 points in the same direction as \mathbf{a} . Also, the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ should obey the same hand rule as the standard basis. Then B will be the matrix of the given rotation relative to the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

Let U denote the transition matrix from the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to the standard basis (columns of U are vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$). Then the desired matrix is $A = UBU^{-1}$

Since $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is going to be an orthonormal basis, the matrix U will be orthogonal. Then $U^{-1} = U^T$ and $A = UBU^T$.

Remark. The basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ obeys the same hand rule as the standard basis if and only if det U > 0.

Hint. Vectors $\mathbf{a} = (1, 2, 2)$, $\mathbf{b} = (-2, -1, 2)$, and $\mathbf{c} = (2, -2, 1)$ are orthogonal.

We have $|\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}| = 3$, hence $\mathbf{v}_1 = \frac{1}{3}\mathbf{a}$, $\mathbf{v}_2 = \frac{1}{3}\mathbf{b}$, $\mathbf{v}_3 = \frac{1}{3}\mathbf{c}$ is an orthonormal basis.

Transition matrix:
$$U = \frac{1}{3} \begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{pmatrix}$$
. det $U = \frac{1}{27} \begin{vmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{vmatrix} = \frac{1}{27} \cdot 27 = 1$.

In the case det U=-1, we would change \mathbf{v}_3 to $-\mathbf{v}_3$, or change \mathbf{v}_2 to $-\mathbf{v}_2$, or interchange \mathbf{v}_2 and \mathbf{v}_3 .

$$A = UBU^T$$

$$=\frac{1}{3}\begin{pmatrix}1 & -2 & 2\\ 2 & -1 & -2\\ 2 & 2 & 1\end{pmatrix}\begin{pmatrix}1 & 0 & 0\\ 0 & 0 & -1\\ 0 & 1 & 0\end{pmatrix}\cdot\frac{1}{3}\begin{pmatrix}1 & 2 & 2\\ -2 & -1 & 2\\ 2 & -2 & 1\end{pmatrix}$$

$$\binom{1}{2}$$

 $=\frac{1}{9}\begin{pmatrix}1 & -4 & 8\\8 & 4 & 1\\-4 & 7 & 4\end{pmatrix}.$

$$1 - \frac{1}{2}$$

$$=\frac{1}{9}\begin{pmatrix}1 & 2 & 2\\ 2 & -2 & 1\\ 2 & 1 & -2\end{pmatrix}\begin{pmatrix}1 & 2 & 2\\ -2 & -1 & 2\\ 2 & -2 & 1\end{pmatrix}$$

$$U = \frac{1}{3} \begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{pmatrix}$$
 is an orthogonal matrix.

 $\det U = 1 \implies U$ is a rotation matrix.

Problem. (a) Find the axis of the rotation.(b) Find the angle of the rotation.

The axis is the set of points $\mathbf{x} \in \mathbb{R}^n$ such that $U\mathbf{x} = \mathbf{x} \iff (U - I)\mathbf{x} = \mathbf{0}$. To find the axis, we apply row reduction to the matrix

$$3(U-I) = 3U - 3I = \begin{pmatrix} -2 & -2 & 2 \\ 2 & -4 & -2 \\ 2 & 2 & -2 \end{pmatrix}.$$

Thus
$$U\mathbf{x}=\mathbf{x}\iff \begin{cases} x-z=0,\\ y=0. \end{cases}$$
 The general solution is $x=t,\ y=0,\ z=t,$ where $t\in\mathbb{R}.$

 \implies **d** = (1,0,1) is the direction of the axis.

 $\begin{pmatrix} -2 & -2 & 2 \\ 2 & -4 & -2 \\ 2 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 2 & -4 & -2 \\ 2 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & -6 & 0 \\ 2 & 2 & 2 \end{pmatrix}$

 $\rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & -6 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

$$U = \frac{1}{3} \begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{pmatrix}$$

Let ϕ be the angle of rotation. Then the eigenvalues of U are 1, $e^{i\phi}$, and $e^{-i\phi}$. Therefore $\det(U-\lambda I)=(1-\lambda)(e^{i\phi}-\lambda)(e^{-i\phi}-\lambda)$.

Besides,
$$\det(U - \lambda I) = -\lambda^3 + c_1\lambda^2 + c_2\lambda + c_3$$
, where $c_1 = \operatorname{tr} U$ (the sum of diagonal entries). It follows that

 $\operatorname{tr} U = 1/3 \implies \cos \phi = -1/3 \implies \phi \approx 109.47^{\circ}$

 $\operatorname{tr} U = 1 + e^{i\phi} + e^{-i\phi} = 1 + 2\cos\phi.$