MATH 304
 Linear Algebra
 Lecture 25:
 Complex eigenvalues and eigenvectors. Orthogonal matrices. Rotations in space.

Complex numbers

\mathbb{C} : complex numbers.
Complex number: $z=x+i y$,
where $x, y \in \mathbb{R}$ and $i^{2}=-1$.
$i=\sqrt{-1}$: imaginary unit
Alternative notation: $z=x+y i$.
$x=$ real part of z,
$i y=$ imaginary part of z
$y=0 \Longrightarrow z=x$ (real number)
$x=0 \Longrightarrow z=i y$ (purely imaginary number)

We add, subtract, and multiply complex numbers as polynomials in i (but keep in mind that $i^{2}=-1$). If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, then

$$
\begin{gathered}
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \\
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right) \\
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right) .
\end{gathered}
$$

Given $z=x+i y$, the complex conjugate of z is $\bar{z}=x-i y$. The modulus of z is $|z|=\sqrt{x^{2}+y^{2}}$.

$$
z \bar{z}=(x+i y)(x-i y)=x^{2}-(i y)^{2}=x^{2}+y^{2}=|z|^{2}
$$

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}, \quad(x+i y)^{-1}=\frac{x-i y}{x^{2}+y^{2}} .
$$

Geometric representation

Any complex number $z=x+i y$ is represented by the vector/point $(x, y) \in \mathbb{R}^{2}$.

$$
x=r \cos \phi, y=r \sin \phi \Longrightarrow z=r(\cos \phi+i \sin \phi)=r e^{i \phi}
$$

$$
\text { If } z_{1}=r_{1} e^{i \phi_{1}} \text { and } z_{2}=r_{2} e^{i \phi_{2}} \text {, then }
$$

$$
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\phi_{1}+\phi_{2}\right)}, z_{1} / z_{2}=\left(r_{1} / r_{2}\right) e^{i\left(\phi_{1}-\phi_{2}\right)}
$$

Fundamental Theorem of Algebra

Any polynomial of degree $n \geq 1$, with complex coefficients, has exactly n roots (counting with multiplicities).

Equivalently, if

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

where $a_{i} \in \mathbb{C}$ and $a_{n} \neq 0$, then there exist complex numbers $z_{1}, z_{2}, \ldots, z_{n}$ such that

$$
p(z)=a_{n}\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right) .
$$

Complex eigenvalues/eigenvectors

Example. $\quad A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right) . \operatorname{det}(A-\lambda I)=\lambda^{2}+1$.
Characteristic roots: $\lambda_{1}=i$ and $\lambda_{2}=-i$.
Associated eigenvectors: $\mathbf{v}_{1}=\binom{1}{-i}$ and $\mathbf{v}_{2}=\binom{1}{i}$.

$$
\begin{aligned}
& \left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\binom{1}{-i}=\binom{i}{1}=i\binom{1}{-i}, \\
& \left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\binom{1}{i}=\binom{-i}{1}=-i\binom{1}{i} .
\end{aligned}
$$

$\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis of eigenvectors. In which space?

Complexification

Instead of the real vector space \mathbb{R}^{2}, we consider a complex vector space \mathbb{C}^{2} (all complex numbers are admissible as scalars).
The linear operator $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(\mathbf{x})=A \mathbf{x}$ is extended to a complex linear operator $F: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \quad F(\mathbf{x})=A \mathbf{x}$.
The vectors $\mathbf{v}_{1}=(1,-i)$ and $\mathbf{v}_{2}=(1, i)$ form a basis for \mathbb{C}^{2}.
\mathbb{C}^{2} is also a real vector space (of real dimension 4). The standard real basis for \mathbb{C}^{2} is $\mathbf{e}_{1}=(1,0), \mathbf{e}_{2}=(0,1)$, $i \mathbf{e}_{1}=(i, 0), \quad i \mathbf{e}_{2}=(0, i)$. The matrix of the operator F with respect to this basis has the block structure $\left(\begin{array}{ll}A & O \\ O & A\end{array}\right)$.

Dot product of complex vectors

Dot product of real vectors

$$
\begin{aligned}
& \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}: \\
& \mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
\end{aligned}
$$

Dot product of complex vectors
$\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{C}^{n}$:

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}+\cdots+x_{n} \overline{y_{n}} .
$$

If $z=r+i t(t, s \in \mathbb{R})$ then $\bar{z}=r-i t$,
$z \bar{z}=r^{2}+t^{2}=|z|^{2}$.
Hence $\mathbf{x} \cdot \mathbf{x}=\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\cdots+\left|x_{n}\right|^{2} \geq 0$.
Also, $\mathbf{x} \cdot \mathbf{x}=0$ if and only if $\mathbf{x}=\mathbf{0}$.
The norm is defined by $\|\mathbf{x}\|=\sqrt{\mathbf{x} \cdot \mathbf{x}}$.

Normal matrices

Definition. An $n \times n$ matrix A is called

- symmetric if $A^{T}=A$;
- orthogonal if $A A^{T}=A^{T} A=l$, i.e., $A^{T}=A^{-1}$;
- normal if $A A^{T}=A^{T} A$.

Theorem Let A be an $n \times n$ matrix with real entries. Then
(a) A is normal \Longleftrightarrow there exists an orthonormal basis for \mathbb{C}^{n} consisting of eigenvectors of A; (b) A is symmetric \Longleftrightarrow there exists an orthonormal basis for \mathbb{R}^{n} consisting of eigenvectors of A.

Example. $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 1\end{array}\right)$.

- A is symmetric.
- A has three eigenvalues: 0,2 , and 3 .
- Associated eigenvectors are $\mathbf{v}_{1}=(-1,0,1)$,
$\mathbf{v}_{2}=(1,0,1)$, and $\mathbf{v}_{3}=(0,1,0)$, respectively.
- Vectors $\frac{1}{\sqrt{2}} \mathbf{v}_{1}, \frac{1}{\sqrt{2}} \mathbf{v}_{2}, \mathbf{v}_{3}$ form an orthonormal basis for \mathbb{R}^{3}.

Theorem Suppose A is a normal matrix. Then for any $\mathbf{x} \in \mathbb{C}^{n}$ and $\lambda \in \mathbb{C}$ one has

$$
A \mathbf{x}=\lambda \mathbf{x} \Longleftrightarrow A^{T} \mathbf{x}=\bar{\lambda} \mathbf{x}
$$

Thus any normal matrix A shares with A^{T} all real eigenvalues and the corresponding eigenvectors. Also, $A \mathbf{x}=\lambda \mathbf{x} \Longleftrightarrow A \overline{\mathbf{x}}=\bar{\lambda} \overline{\mathbf{x}}$ for any matrix A with real entries.

Corollary All eigenvalues λ of a symmetric matrix are real $(\bar{\lambda}=\lambda)$. All eigenvalues λ of an orthogonal matrix satisfy $\bar{\lambda}=\lambda^{-1} \Longleftrightarrow|\lambda|=1$.

Why are orthogonal matrices called so?

Theorem Given an $n \times n$ matrix A, the following conditions are equivalent:
(i) A is orthogonal: $A^{T}=A^{-1}$;
(ii) columns of A form an orthonormal basis for \mathbb{R}^{n}; (iii) rows of A form an orthonormal basis for \mathbb{R}^{n}.

Proof: Entries of the matrix $A^{T} A$ are dot products of columns of A. Entries of $A A^{T}$ are dot products of rows of A.

In particular, an orthogonal matrix is the transition matrix from one orthonormal basis to another.

Example. $\quad A_{\phi}=\left(\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right)$.

- $A_{\phi} A_{\psi}=A_{\phi+\psi}$
- $A_{\phi}^{-1}=A_{-\phi}=A_{\phi}^{T}$
- A_{ϕ} is orthogonal
- $\operatorname{det}\left(A_{\phi}-\lambda I\right)=(\cos \phi-\lambda)^{2}+\sin ^{2} \phi$.
- Eigenvalues: $\lambda_{1}=\cos \phi+i \sin \phi=e^{i \phi}$,
$\lambda_{2}=\cos \phi-i \sin \phi=e^{-i \phi}$.
- Associated eigenvectors: $\mathbf{v}_{1}=(1,-i)$, $\mathbf{v}_{2}=(1, i)$.
- Vectors $\frac{1}{\sqrt{2}} \mathbf{v}_{1}$ and $\frac{1}{\sqrt{2}} \mathbf{v}_{2}$ form an orthonormal basis for \mathbb{C}^{2}.

Consider a linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, L(\mathbf{x})=A \mathbf{x}$, where A is an $n \times n$ matrix.

Theorem The following conditions are equivalent:
(i) $|L(\mathbf{x})|=|\mathbf{x}|$ for all $\mathbf{x} \in \mathbb{R}^{n}$;
(ii) $L(\mathbf{x}) \cdot L(\mathbf{y})=\mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$;
(iii) the matrix A is orthogonal.

Definition. A transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called an isometry if it preserves distances between points: $|f(\mathbf{x})-f(\mathbf{y})|=|\mathbf{x}-\mathbf{y}|$.

Theorem Any isometry $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ can be represented as $f(\mathbf{x})=A \mathbf{x}+\mathbf{x}_{0}$, where $\mathbf{x}_{0} \in \mathbb{R}^{n}$ and A is an orthogonal matrix.

Consider a linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, L(\mathbf{x})=A \mathbf{x}$, where A is an $n \times n$ orthogonal matrix.
Theorem There exists an orthonormal basis for \mathbb{R}^{n} such that the matrix of L relative to this basis has the diagonal block structure

$$
\left(\begin{array}{cccc}
D_{ \pm 1} & O & \ldots & O \\
O & R_{1} & \ldots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \ldots & R_{k}
\end{array}\right)
$$

where $D_{ \pm 1}$ is a diagonal matrix whose diagonal entries are equal to 1 or -1 , and

$$
R_{j}=\left(\begin{array}{rr}
\cos \phi_{j} & -\sin \phi_{j} \\
\sin \phi_{j} & \cos \phi_{j}
\end{array}\right), \quad \phi_{j} \in \mathbb{R}
$$

Classification of 2×2 orthogonal matrices:

$$
\left(\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \quad\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

rotation about the origin

reflection in a line
-1
Eigenvalues: $\quad e^{i \phi}$ and $e^{-i \phi} \quad-1$ and 1

Classification of 3×3 orthogonal matrices:
$A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi\end{array}\right), \quad B=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$,
$C=\left(\begin{array}{rcc}-1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi\end{array}\right)$.
$A=$ rotation about a line; $B=$ reflection in a plane; $C=$ rotation about a line combined with reflection in the orthogonal plane. $\operatorname{det} A=1, \operatorname{det} B=\operatorname{det} C=-1$.
A has eigenvalues $1, e^{i \phi}, e^{-i \phi}$. B has eigenvalues
$-1,1,1$. C has eigenvalues $-1, e^{i \phi}, e^{-i \phi}$.

Rotations in space

If the axis of rotation is oriented, we can say about clockwise or counterclockwise rotations (with respect to the view from the positive semi-axis).

Clockwise rotations about coordinate axes

Z

Z

$$
\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right)
$$

Problem. Find the matrix of the rotation by 90° about the line spanned by the vector $\mathbf{a}=(1,2,2)$. The rotation is assumed to be counterclockwise when looking from the tip of \mathbf{a}.
$B=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right) \quad \begin{gathered}\text { is the matrix of (counterclockwise) } \\ \text { rotation by } 90^{\circ} \text { about the } x \text {-axis. }\end{gathered}$
We need to find an orthonormal basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ such that \mathbf{v}_{1} points in the same direction as \mathbf{a}. Also, the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ should obey the same hand rule as the standard basis. Then B will be the matrix of the given rotation relative to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

Let U denote the transition matrix from the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to the standard basis (columns of U are vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$). Then the desired matrix is $A=U B U^{-1}$.

Since $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is going to be an orthonormal basis, the matrix U will be orthogonal. Then $U^{-1}=U^{T}$ and $A=U B U^{T}$.

Remark. The basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ obeys the same hand rule as the standard basis if and only if $\operatorname{det} U>0$.

Hint. Vectors $\mathbf{a}=(1,2,2), \mathbf{b}=(-2,-1,2)$, and $\mathbf{c}=(2,-2,1)$ are orthogonal.
We have $|\mathbf{a}|=|\mathbf{b}|=|\mathbf{c}|=3$, hence $\mathbf{v}_{1}=\frac{1}{3} \mathbf{a}$, $\mathbf{v}_{2}=\frac{1}{3} \mathbf{b}, \mathbf{v}_{3}=\frac{1}{3} \mathbf{c}$ is an orthonormal basis.
Transition matrix: $U=\frac{1}{3}\left(\begin{array}{rrr}1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1\end{array}\right)$.

$$
\operatorname{det} U=\frac{1}{27}\left|\begin{array}{rrr}
1 & -2 & 2 \\
2 & -1 & -2 \\
2 & 2 & 1
\end{array}\right|=\frac{1}{27} \cdot 27=1
$$

In the case $\operatorname{det} U=-1$, we would change \mathbf{v}_{3} to $-\mathbf{v}_{3}$, or change \mathbf{v}_{2} to $-\mathbf{v}_{2}$, or interchange \mathbf{v}_{2} and \mathbf{v}_{3}.

$$
\begin{aligned}
& A=U B U^{\top} \\
& =\frac{1}{3}\left(\begin{array}{rrr}
1 & -2 & 2 \\
2 & -1 & -2 \\
2 & 2 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \cdot \frac{1}{3}\left(\begin{array}{rrr}
1 & 2 & 2 \\
-2 & -1 & 2 \\
2 & -2 & 1
\end{array}\right) \\
& =\frac{1}{9}\left(\begin{array}{rrr}
1 & 2 & 2 \\
2 & -2 & 1 \\
2 & 1 & -2
\end{array}\right)\left(\begin{array}{rrr}
1 & 2 & 2 \\
-2 & -1 & 2 \\
2 & -2 & 1
\end{array}\right) \\
& =\frac{1}{9}\left(\begin{array}{rrr}
1 & -4 & 8 \\
8 & 4 & 1 \\
-4 & 7 & 4
\end{array}\right) .
\end{aligned}
$$

$U=\frac{1}{3}\left(\begin{array}{rrr}1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1\end{array}\right) \quad$ is an orthogonal matrix. $\operatorname{det} U=1 \Longrightarrow U$ is a rotation matrix.

Problem. (a) Find the axis of the rotation. (b) Find the angle of the rotation.

The axis is the set of points $x \in \mathbb{R}^{n}$ such that $U \mathbf{x}=\mathbf{x} \Longleftrightarrow(U-I) \mathbf{x}=\mathbf{0}$. To find the axis, we apply row reduction to the matrix

$$
3(U-I)=3 U-3 I=\left(\begin{array}{rrr}
-2 & -2 & 2 \\
2 & -4 & -2 \\
2 & 2 & -2
\end{array}\right) .
$$

$\left(\begin{array}{rrr}-2 & -2 & 2 \\ 2 & -4 & -2 \\ 2 & 2 & -2\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & 1 & -1 \\ 2 & -4 & -2 \\ 2 & 2 & -2\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & 1 & -1 \\ 0 & -6 & 0 \\ 2 & 2 & -2\end{array}\right)$
$\rightarrow\left(\begin{array}{rrr}1 & 1 & -1 \\ 0 & -6 & 0 \\ 0 & 0 & 0\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$
Thus $U \mathbf{x}=\mathbf{x} \Longleftrightarrow\left\{\begin{array}{l}x-z=0, \\ y=0 .\end{array}\right.$
The general solution is $x=t, y=0, z=t$, where $t \in \mathbb{R}$.
$\Longrightarrow \mathbf{d}=(1,0,1)$ is the direction of the axis.

$$
U=\frac{1}{3}\left(\begin{array}{rrr}
1 & -2 & 2 \\
2 & -1 & -2 \\
2 & 2 & 1
\end{array}\right)
$$

Let ϕ be the angle of rotation. Then the eigenvalues of U are $1, e^{i \phi}$, and $e^{-i \phi}$. Therefore

$$
\operatorname{det}(U-\lambda I)=(1-\lambda)\left(e^{i \phi}-\lambda\right)\left(e^{-i \phi}-\lambda\right)
$$

Besides, $\operatorname{det}(U-\lambda I)=-\lambda^{3}+c_{1} \lambda^{2}+c_{2} \lambda+c_{3}$, where $c_{1}=\operatorname{tr} U$ (the sum of diagonal entries). It follows that

$$
\operatorname{tr} U=1+e^{i \phi}+e^{-i \phi}=1+2 \cos \phi .
$$

$\operatorname{tr} U=1 / 3 \Longrightarrow \cos \phi=-1 / 3 \Longrightarrow \phi \approx 109.47^{\circ}$

