MATH 304

Linear Algebra

Inverse matrix (continued).

_

Lecture 7:

Identity matrix

Definition. The **identity matrix** (or **unit matrix**) is a diagonal matrix with all diagonal entries equal to 1. The $n \times n$ identity matrix is denoted I_n or simply I.

$$I_1=(1), \quad I_2=egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}, \quad I_3=egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}.$$

In general,
$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & 1 \end{pmatrix}$$
.

Theorem. Let A be an arbitrary $m \times n$ matrix. Then $I_m A = AI_n = A$.

Inverse matrix

Definition. Let A be an $n \times n$ matrix. The **inverse** of A is an $n \times n$ matrix, denoted A^{-1} , such that $AA^{-1} = A^{-1}A = I.$

If A^{-1} exists then the matrix A is called **invertible**. Otherwise A is called **singular**.

Let A and B be $n \times n$ matrices. If A is invertible then we can **divide** B by A:

left division: $A^{-1}B$, right division: BA^{-1} .

Remark. There is no notation for the matrix division and the notion is not really used.

Basic properties of inverse matrices

- If $B = A^{-1}$ then $A = B^{-1}$. In other words, if A is invertible, so is A^{-1} , and $A = (A^{-1})^{-1}$.
- The inverse matrix (if it exists) is unique. Moreover, if AB = CA = I for some $n \times n$ matrices B and C, then $B = C = A^{-1}$.

Indeed,
$$B = IB = (CA)B = C(AB) = CI = C$$
.

• If $n \times n$ matrices A and B are invertible, so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I,$$

 $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I.$

• Similarly, $(A_1A_2...A_k)^{-1} = A_k^{-1}...A_2^{-1}A_1^{-1}$.

Inverting diagonal matrices

Theorem A diagonal matrix $D = \operatorname{diag}(d_1, \ldots, d_n)$ is invertible if and only if all diagonal entries are nonzero: $d_i \neq 0$ for $1 \leq i \leq n$.

If D is invertible then $D^{-1} = \operatorname{diag}(d_1^{-1}, \dots, d_n^{-1})$.

$$egin{pmatrix} d_1 & 0 & \dots & 0 \ 0 & d_2 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & d_n \end{pmatrix}^{-1} = egin{pmatrix} d_1^{-1} & 0 & \dots & 0 \ 0 & d_2^{-1} & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & d_n^{-1} \end{pmatrix}$$

Inverting 2×2 matrices

Definition. The **determinant** of a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $\det A = ad - bc$.

Theorem A matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible if and only if det $A \neq 0$.

If $\det A \neq 0$ then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Problem. Solve a system $\begin{cases} 4x + 3y = 5, \\ 3x + 2y = -1 \end{cases}$

$$\begin{cases} 4x + 3y = 5, \\ 3x + 2y = -1 \end{cases}$$

This system is equivalent to a matrix equation $A\mathbf{x} = \mathbf{b}$,

where
$$A = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$.

We have det $A = -1 \neq 0$. Hence A is invertible.

$$A\mathbf{x} = \mathbf{b} \implies A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{b} \implies (A^{-1}A)\mathbf{x} = A^{-1}\mathbf{b}$$

 $\implies \mathbf{x} = A^{-1}\mathbf{b}$

Conversely, $\mathbf{x} = A^{-1}\mathbf{b} \implies A\mathbf{x} = A(A^{-1}\mathbf{b}) = (AA^{-1})\mathbf{b} = \mathbf{b}$.

Conversely,
$$\mathbf{x} = A^{-1}\mathbf{b} \implies A\mathbf{x} = A(A^{-1}\mathbf{b}) = (AA^{-1})\mathbf{b} = \mathbf{b}$$
.

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 5 \\ -1 \end{pmatrix} = \frac{1}{-1} \begin{pmatrix} 2 & -3 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} 5 \\ -1 \end{pmatrix} = \begin{pmatrix} -13 \\ 19 \end{pmatrix}$$

System of n linear equations in n variables:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases} \iff A\mathbf{x} = \mathbf{b},$$

where

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}.$$

Theorem If the matrix A is invertible then the system has a unique solution, which is $\mathbf{x} = A^{-1}\mathbf{b}$.

General results on inverse matrices

Theorem 1 Given a square matrix A, the following are equivalent:

- (i) A is invertible;
- (ii) $\mathbf{x} = \mathbf{0}$ is the only solution of the matrix equation $A\mathbf{x} = \mathbf{0}$;
- (iii) the row echelon form of A has no zero rows;
- (iv) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row operations converts a matrix *A* into the identity matrix.

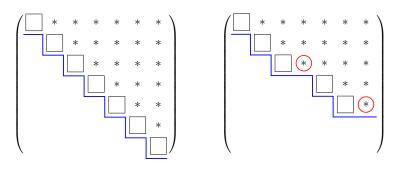
Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1} .

Theorem 3 For any $n \times n$ matrices A and B,

$$BA = I \iff AB = I.$$

Sketch of the proof: Assume BA = I. Then $A\mathbf{x} = \mathbf{0} \Longrightarrow B(A\mathbf{x}) = B\mathbf{0} \Longrightarrow (BA)\mathbf{x} = \mathbf{0} \Longrightarrow \mathbf{x} = \mathbf{0}$. By Theorem 1, A is invertible.

Row echelon form of a square matrix:



invertible case

noninvertible case

Example.
$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}$$
.

To check whether A is invertible, we convert it to row echelon form.

Interchange the 1st row with the 2nd row:

$$\begin{pmatrix} 1 & 0 & 1 \\ 3 & -2 & 0 \\ -2 & 3 & 0 \end{pmatrix}$$

Add -3 times the 1st row to the 2nd row:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & -3 \\ -2 & 3 & 0 \end{pmatrix}$$

Add 2 times the 1st row to the 3rd row:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & -3 \\ 0 & 3 & 2 \end{pmatrix}$$

Multiply the 2nd row by -0.5:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 3 & 2 \end{pmatrix}$$

0 3 2

Add
$$-3$$
 times the 2nd row to the 3rd row:
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 0 & -2.5 \end{pmatrix}$$

Multiply the 3rd row by -0.4:

$$\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1.5 \\
0 & 0 & 1
\end{pmatrix}$$

We already know that the matrix A is invertible.

Let's proceed towards reduced row echelon form.

Add -1.5 times the 3rd row to the 2nd row:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Add -1 times the 3rd row to the 1st row:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

To obtain A^{-1} , we need to apply the following sequence of elementary row operations to the identity matrix:

- interchange the 1st row with the 2nd row,
 - add −3 times the 1st row to the 2nd row,
 - add 2 times the 1st row to the 3rd row.
 - multiply the 2nd row by -0.5,
 - add -3 times the 2nd row to the 3rd row,
 - multiply the 3rd row by -0.4,
- add -1.5 times the 3rd row to the 2nd row, add -1 times the 3rd row to the 1st row.

A convenient way to compute the inverse matrix A^{-1} is to merge the matrices A and I into one 3×6 matrix $(A \mid I)$, and apply elementary row operations to this new matrix.

$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}, \qquad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(A \mid I) = \begin{pmatrix} 3 & -2 & 0 \mid 1 & 0 & 0 \\ 1 & 0 & 1 \mid 0 & 1 & 0 \\ -2 & 3 & 0 \mid 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
3 & -2 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{pmatrix}$$

Interchange the 1st row with the 2nd row:

$$\begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
3 & -2 & 0 & 1 & 0 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{pmatrix}$$

Add -3 times the 1st row to the 2nd row:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -2 & -3 & 1 & -3 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Add 2 times the 1st row to the 3rd row: $\begin{pmatrix} 1 & 0 & 1 & 0 \\ \end{pmatrix}$

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -2 & -3 & 1 & -3 & 0 \\ 0 & 3 & 2 & 0 & 2 & 1 \end{pmatrix}$$

Multiply the 2nd row by -0.5:

Add -3 times the 2nd row to the 3rd row:

$$\begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\
0 & 0 & -2.5 & 1.5 & -2.5 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1.5 \\
0 & 0 & 1
\end{pmatrix}
\begin{vmatrix}
0 & 1 & 0 \\
-0.5 & 1.5 & 0 \\
-0.6 & 1 & -0.4
\end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 1 & | -0.6 & 1 & -0.4 \end{pmatrix}$$

Add -1.5 times the 3rd row to the 2nd row:

$$\begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0.4 & 0 & 0.6 \\
0 & 0 & 1 & -0.6 & 1 & -0.4
\end{pmatrix}$$

Add
$$-1$$
 times the 3rd row to the 1st row:

$$\begin{pmatrix} 1 & 0 & 0 & 0.6 & 0 & 0.4 \\ 0 & 1 & 0 & 0.4 & 0 & 0.6 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4 \end{pmatrix} = (I \mid A^{-1})$$

Thus
$$\begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{3}{5} & 0 & \frac{2}{5} \\ \frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{3}{5} & 1 & -\frac{2}{5} \end{pmatrix}.$$
That is,
$$\begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} \frac{3}{5} & 0 & \frac{2}{5} \\ \frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{3}{5} & 1 & -\frac{2}{5} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$\begin{pmatrix} \frac{3}{5} & 0 & \frac{2}{5} \\ \frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{3}{5} & 1 & -\frac{2}{5} \end{pmatrix} \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$