MATH 304
 Linear Algebra

Lecture 14:
Linear independence.

Spanning set

Let S be a subset of a vector space V.
Definition. The span of the set S is the smallest subspace $W \subset V$ that contains S. If S is not empty then $W=\operatorname{Span}(S)$ consists of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}$ such that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in S$ and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.

We say that the set S spans the subspace W or that S is a spanning set for W.
Remark. If S_{1} is a spanning set for a vector space V and $S_{1} \subset S_{2} \subset V$, then S_{2} is also a spanning set for V.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ are called linearly dependent if they satisfy a relation

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where the coefficients $r_{1}, \ldots, r_{k} \in \mathbb{R}$ are not all equal to zero. Otherwise vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are called linearly independent. That is, if

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0} \Longrightarrow r_{1}=\cdots=r_{k}=0 .
$$

An infinite set $S \subset V$ is linearly dependent if there are some linearly dependent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in S$.

Otherwise S is linearly independent.

Examples of linear independence

- Vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ in \mathbb{R}^{3}.
$x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}=\mathbf{0} \Longrightarrow(x, y, z)=\mathbf{0}$
$\Longrightarrow x=y=z=0$
- Matrices $E_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), E_{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$,

$$
E_{21}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \text { and } E_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

$a E_{11}+b E_{12}+c E_{21}+d E_{22}=O \Longrightarrow\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=0$ $\Longrightarrow a=b=c=d=0$

Examples of linear independence

- Polynomials $1, x, x^{2}, \ldots, x^{n}$.
$a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0$ identically
$\Longrightarrow \quad a_{i}=0$ for $0 \leq i \leq n$
- The infinite set $\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$.
- Polynomials $p_{1}(x)=1, p_{2}(x)=x-1$, and $p_{3}(x)=(x-1)^{2}$.
$a_{1} p_{1}(x)+a_{2} p_{2}(x)+a_{3} p_{3}(x)=a_{1}+a_{2}(x-1)+a_{3}(x-1)^{2}=$ $=\left(a_{1}-a_{2}+a_{3}\right)+\left(a_{2}-2 a_{3}\right) x+a_{3} x^{2}$.
Hence $a_{1} p_{1}(x)+a_{2} p_{2}(x)+a_{3} p_{3}(x)=0$ identically
$\Longrightarrow a_{1}-a_{2}+a_{3}=a_{2}-2 a_{3}=a_{3}=0$
$\Longrightarrow \quad a_{1}=a_{2}=a_{3}=0$

Problem Let $\mathbf{v}_{1}=(1,2,0), \mathbf{v}_{2}=(3,1,1)$, and $\mathbf{v}_{3}=(4,-7,3)$. Determine whether vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent.

We have to check if there exist $r_{1}, r_{2}, r_{3} \in \mathbb{R}$ not all zero such that $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+r_{3} \mathbf{v}_{3}=\mathbf{0}$.
This vector equation is equivalent to a system

$$
\left\{\begin{array}{l}
r_{1}+3 r_{2}+4 r_{3}=0 \\
2 r_{1}+r_{2}-7 r_{3}=0 \\
0 r_{1}+r_{2}+3 r_{3}=0
\end{array} \quad\left(\begin{array}{rrr|r}
1 & 3 & 4 & 0 \\
2 & 1 & -7 & 0 \\
0 & 1 & 3 & 0
\end{array}\right)\right.
$$

The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent if and only if the matrix $A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ is singular. We obtain that $\operatorname{det} A=0$.

Theorem The following conditions are equivalent:
(i) vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly dependent;
(ii) one of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a linear
combination of the other $k-1$ vectors.
Proof: (i) \Longrightarrow (ii) Suppose that

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where $r_{i} \neq 0$ for some $1 \leq i \leq k$. Then

$$
\mathbf{v}_{i}=-\frac{r_{1}}{r_{i}} \mathbf{v}_{1}-\cdots-\frac{r_{i-1}}{r_{i}} \mathbf{v}_{i-1}-\frac{r_{i+1}}{r_{i}} \mathbf{v}_{i+1}-\cdots-\frac{r_{k}}{r_{i}} \mathbf{v}_{k} .
$$

(ii) \Longrightarrow (i) Suppose that

$$
\mathbf{v}_{i}=s_{1} \mathbf{v}_{1}+\cdots+s_{i-1} \mathbf{v}_{i-1}+s_{i+1} \mathbf{v}_{i+1}+\cdots+s_{k} \mathbf{v}_{k}
$$

for some scalars s_{j}. Then
$s_{1} \mathbf{v}_{1}+\cdots+s_{i-1} \mathbf{v}_{i-1}-\mathbf{v}_{i}+s_{i+1} \mathbf{v}_{i+1}+\cdots+s_{k} \mathbf{v}_{k}=\mathbf{0}$.

Theorem Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$ are linearly dependent whenever $m>n$ (i.e., the number of coordinates is less than the number of vectors).

Proof: Let $\mathbf{v}_{j}=\left(a_{1 j}, a_{2 j}, \ldots, a_{n j}\right)$ for $j=1,2, \ldots, m$.
Then the vector equality $t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{m} \mathbf{v}_{m}=\mathbf{0}$ is equivalent to the system

$$
\left\{\begin{array}{c}
a_{11} t_{1}+a_{12} t_{2}+\cdots+a_{1 m} t_{m}=0 \\
a_{21} t_{1}+a_{22} t_{2}+\cdots+a_{2 m} t_{m}=0 \\
\cdots \cdots \cdots \\
a_{n 1} t_{1}+a_{n 2} t_{2}+\cdots+a_{n m} t_{m}=0
\end{array}\right.
$$

Note that vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ are columns of the matrix $\left(a_{i j}\right)$. The number of leading entries in the row echelon form is at most n. If $m>n$ then there are free variables, therefore the zero solution is not unique.

Example. Consider vectors $\mathbf{v}_{1}=(1,-1,1)$,
$\mathbf{v}_{2}=(1,0,0), \mathbf{v}_{3}=(1,1,1)$, and $\mathbf{v}_{4}=(1,2,4)$ in \mathbb{R}^{3}.
Two vectors are linearly dependent if and only if they are parallel. Hence \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent.
Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent if and only if the matrix $A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ is invertible.

$$
\operatorname{det} A=\left|\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right|=-\left|\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right|=2 \neq 0 .
$$

Therefore $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent.
Four vectors in \mathbb{R}^{3} are always linearly dependent.
Thus $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are linearly dependent.

Problem. Let $A=\left(\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right)$. Determine whether matrices A, A^{2}, and A^{3} are linearly independent.

We have $A=\left(\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right), \quad A^{2}=\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right), \quad A^{3}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
The task is to check if there exist $r_{1}, r_{2}, r_{3} \in \mathbb{R}$ not all zero such that $r_{1} A+r_{2} A^{2}+r_{3} A^{3}=O$.
This matrix equation is equivalent to a system

$$
\left\{\begin{array}{l}
-r_{1}+0 r_{2}+r_{3}=0 \\
r_{1}-r_{2}+0 r_{3}=0 \\
-r_{1}+r_{2}+0 r_{3}=0 \\
0 r_{1}-r_{2}+r_{3}=0
\end{array} \quad\left(\begin{array}{rrr|l}
-1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\right.
$$

The row echelon form of the augmented matrix shows there is a free variable. Hence the system has a nonzero solution so that the matrices are linearly dependent (one relation is $\left.A+A^{2}+A^{3}=0\right)$.

