MATH 304

Lecture 21: Range and kernel.

Linear Algebra

Range and kernel.

General linear equations.

Matrix transformations.

Linear transformation

Definition. Given vector spaces V_1 and V_2 , a mapping $L: V_1 \rightarrow V_2$ is **linear** if

$$L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}),$$

$$L(r\mathbf{x}) = rL(\mathbf{x})$$

for any $\mathbf{x}, \mathbf{y} \in V_1$ and $r \in \mathbb{R}$.

Basic properties of linear mappings:

- $L(r_1\mathbf{v}_1 + \cdots + r_k\mathbf{v}_k) = r_1L(\mathbf{v}_1) + \cdots + r_kL(\mathbf{v}_k)$ for all $k \ge 1$, $\mathbf{v}_1, \dots, \mathbf{v}_k \in V_1$, and $r_1, \dots, r_k \in \mathbb{R}$.
 - $L(\mathbf{0}_1) = \mathbf{0}_2$, where $\mathbf{0}_1$ and $\mathbf{0}_2$ are zero vectors in V_1 and V_2 , respectively.
 - $L(-\mathbf{v}) = -L(\mathbf{v})$ for any $\mathbf{v} \in V_1$.

Examples. $\mathcal{M}_{m,n}(\mathbb{R})$: the space of $m \times n$ matrices.

AA (ID) AA (ID) AT

•
$$\alpha: \mathcal{M}_{m,n}(\mathbb{R}) \to \mathcal{M}_{n,m}(\mathbb{R}), \quad \alpha(A) = A^T.$$

$$\alpha(A+B) = \alpha(A) + \alpha(B) \iff (A+B)^T = A^T + B^T.$$

$$\alpha(rA) = r \alpha(A) \iff (rA)^T = rA^T.$$

Hence α is linear.

•
$$\beta: \mathcal{M}_{2,2}(\mathbb{R}) \to \mathbb{R}$$
, $\beta(A) = \det A$.

Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

Then
$$A + B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

We have $\det(A) = \det(B) = 0$ while $\det(A + B) = 1$. Hence $\beta(A + B) \neq \beta(A) + \beta(B)$ so that β is not linear.

Range and kernel

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear mapping.

Definition. The **range** (or **image**) of L is the set of all vectors $\mathbf{w} \in W$ such that $\mathbf{w} = L(\mathbf{v})$ for some $\mathbf{v} \in V$. The range of L is denoted L(V).

The **kernel** of L, denoted ker L, is the set of all vectors $\mathbf{v} \in V$ such that $L(\mathbf{v}) = \mathbf{0}$.

Theorem (i) The range of L is a subspace of W. (ii) The kernel of L is a subspace of V.

Example. $L: \mathbb{R}^3 \to \mathbb{R}^3$, $L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

The kernel ker(L) is the nullspace of the matrix.

$$L\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + y \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$

The range $L(\mathbb{R}^3)$ is the column space of the matrix.

Example. $L: \mathbb{R}^3 \to \mathbb{R}^3$, $L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

The range of L is spanned by vectors (1,1,1), (0,2,0), and (-1,-1,-1). It follows that $L(\mathbb{R}^3)$ is the plane spanned by (1,1,1) and (0,1,0).

To find ker(L), we apply row reduction to the matrix:

$$\begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Hence $(x, y, z) \in \ker(L)$ if x - z = y = 0. It follows that $\ker(L)$ is the line spanned by (1, 0, 1).

Example. $L: C^3(\mathbb{R}) \to C(\mathbb{R}), L(u) = u''' - 2u'' + u'.$

According to the theory of differential equations, the initial value problem

$$\begin{cases} u'''(x) - 2u''(x) + u'(x) = g(x), & x \in \mathbb{R}, \\ u(a) = b_0, \\ u'(a) = b_1, \\ u''(a) = b_2 \end{cases}$$

has a unique solution for any $g \in C(\mathbb{R})$ and any $b_0, b_1, b_2 \in \mathbb{R}$. It follows that $L(C^3(\mathbb{R})) = C(\mathbb{R})$.

Also, the initial data evaluation I(u) = (u(a), u'(a), u''(a)), which is a linear mapping $I: C^3(\mathbb{R}) \to \mathbb{R}^3$, is one-to-one when restricted to $\ker(L)$. Hence $\dim \ker(L) = 3$.

It is easy to check that $L(xe^x) = L(e^x) = L(1) = 0$. Besides, the functions xe^x , e^x , and 1 are linearly independent (use Wronskian). It follows that $\ker(L) = \operatorname{Span}(xe^x, e^x, 1)$.

General linear equations

Definition. A linear equation is an equation of the form

$$L(\mathbf{x}) = \mathbf{b}$$

where $L: V \to W$ is a linear mapping, **b** is a given vector from W, and **x** is an unknown vector from V.

The range of L is the set of all vectors $\mathbf{b} \in W$ such that the equation $L(\mathbf{x}) = \mathbf{b}$ has a solution.

The kernel of L is the solution set of the **homogeneous** linear equation $L(\mathbf{x}) = \mathbf{0}$.

Theorem If the linear equation $L(\mathbf{x}) = \mathbf{b}$ is solvable and dim ker $L < \infty$, then the general solution is

$$\mathbf{x}_0 + t_1 \mathbf{v}_1 + \cdots + t_k \mathbf{v}_k$$
,

where \mathbf{x}_0 is a particular solution, $\mathbf{v}_1, \dots, \mathbf{v}_k$ is a basis for the kernel of L, and t_1, \dots, t_k are arbitrary scalars.

Example.
$$\begin{cases} x + y + z = 4, \\ x + 2y = 3. \end{cases}$$

$$L: \mathbb{R}^3 \to \mathbb{R}^2, \quad L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Linear equation: $L(\mathbf{x}) = \mathbf{b}$, where $\mathbf{b} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$.

$$\begin{pmatrix} 1 & 1 & 1 & | & 4 \\ 1 & 2 & 0 & | & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 4 \\ 0 & 1 & -1 & | & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & | & 5 \\ 0 & 1 & -1 & | & -1 \end{pmatrix}$$

$$\begin{cases} x + 2z = 5 \\ y - z = -1 \end{cases} \iff \begin{cases} x = 5 - 2z \\ y = -1 + z \end{cases}$$

$$y-z=-1 y=-1+z$$

$$(x,y,z)=(5-2t,-1+t,t)=(5,-1,0)+t(-2,1,1).$$

Example. $u'''(x) - 2u''(x) + u'(x) = e^{2x}$.

Linear operator $L: C^3(\mathbb{R}) \to C(\mathbb{R})$, Lu = u''' - 2u'' + u'

Linear equation: Lu = b, where $b(x) = e^{2x}$.

We already know that functions xe^x , e^x and 1 form a basis for the kernel of L. It remains to find a particular solution.

$$L(e^{2x}) = 8e^{2x} - 2(4e^{2x}) + 2e^{2x} = 2e^{2x}.$$

Since L is a linear operator, $L(\frac{1}{2}e^{2x}) = e^{2x}$.

Particular solution: $u_0(x) = \frac{1}{2}e^{2x}$.

Thus the general solution is

$$u(x) = \frac{1}{2}e^{2x} + t_1xe^x + t_2e^x + t_3.$$

Matrix transformations

Any $m \times n$ matrix A gives rise to a transformation $L : \mathbb{R}^n \to \mathbb{R}^m$ given by $L(\mathbf{x}) = A\mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^n$ and $L(\mathbf{x}) \in \mathbb{R}^m$ are regarded as column vectors. This transformation is **linear**.

Example.
$$L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 4 & 7 \\ 0 & 5 & 8 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

Let $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$, $\mathbf{e}_3 = (0,0,1)$ be the standard basis for \mathbb{R}^3 . We have that $L(\mathbf{e}_1) = (1,3,0)$, $L(\mathbf{e}_2) = (0,4,5)$, $L(\mathbf{e}_3) = (2,7,8)$. Thus $L(\mathbf{e}_1)$, $L(\mathbf{e}_2)$, $L(\mathbf{e}_3)$ are columns of the matrix.

Problem. Find a linear mapping $L : \mathbb{R}^3 \to \mathbb{R}^2$ such that $L(\mathbf{e}_1) = (1,1)$, $L(\mathbf{e}_2) = (0,-2)$, $L(\mathbf{e}_3) = (3,0)$, where $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ is the standard basis for \mathbb{R}^3 .

 $L(x, y, z) = L(x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3)$

$$= xL(\mathbf{e}_1) + yL(\mathbf{e}_2) + zL(\mathbf{e}_3)$$

$$= x(1,1) + y(0,-2) + z(3,0) = (x+3z, x-2y)$$

$$L(x,y,z) = \begin{pmatrix} x+3z \\ x-2y \end{pmatrix} = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Columns of the matrix are vectors $L(\mathbf{e}_1), L(\mathbf{e}_2), L(\mathbf{e}_3)$.

Theorem Suppose $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear map. Then there exists an $m \times n$ matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. Columns of A are vectors $L(\mathbf{e}_1), L(\mathbf{e}_2), \ldots, L(\mathbf{e}_n)$, where $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ is the standard basis for \mathbb{R}^n .

$$\mathbf{y} = A\mathbf{x} \iff \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \qquad \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} \qquad \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} \qquad \begin{pmatrix} a_{1n} \\ a_{2n} \end{pmatrix}$$

$$\iff \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$$