MATH 304
 Linear Algebra

Lecture 24:
Orthogonal complement.
Orthogonal projection.

Euclidean structure

Euclidean structure in \mathbb{R}^{n} includes:

- length of a vector: $\mid \mathbf{x}$,
- angle between vectors: θ,
- dot product: $\mathbf{x} \cdot \mathbf{y}=|\mathbf{x}||\mathbf{y}| \cos \theta$.

Length and distance

Definition. The length of a vector

$$
\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{R}^{n} \text { is }
$$

$$
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

The distance between vectors/points \mathbf{x} and \mathbf{y} is

$$
\|\mathbf{y}-\mathbf{x}\| .
$$

Properties of length:

$$
\begin{array}{lr}
\|\mathbf{x}\| \geq 0, \quad\|\mathbf{x}\|=0 \text { only if } \mathbf{x}=\mathbf{0} & \text { (positivity) } \\
\|r \mathbf{x}\|=|r|\|\mathbf{x}\| & \text { (homogeneity) } \\
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| & \text { (triangle inequality) }
\end{array}
$$

Scalar product

Definition. The scalar product of vectors
$\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

Properties of scalar product:
$\mathbf{x} \cdot \mathbf{x} \geq 0, \mathbf{x} \cdot \mathbf{x}=0$ only if $\mathbf{x}=\mathbf{0}$
(positivity)
$x \cdot y=y \cdot x$
(symmetry)
$(\mathbf{x}+\mathbf{y}) \cdot \mathbf{z}=\mathbf{x} \cdot \mathbf{z}+\mathbf{y} \cdot \mathbf{z}$
$(r \mathbf{x}) \cdot \mathbf{y}=r(\mathbf{x} \cdot \mathbf{y})$
(distributive law)
(homogeneity)
In particular, $\mathbf{x} \cdot \mathbf{y}$ is a bilinear function (i.e., it is both a linear function of \mathbf{x} and a linear function of \mathbf{y}).

Angle

Cauchy-Schwarz inequality: $\quad|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.
By the Cauchy-Schwarz inequality, for any nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ we have

$$
\cos \theta=\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|} \text { for a unique } 0 \leq \theta \leq \pi
$$

θ is called the angle between the vectors \mathbf{x} and \mathbf{y}.
The vectors \mathbf{x} and \mathbf{y} are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y}=0$ (i.e., if $\theta=90^{\circ}$).

Orthogonality

Definition 1. Vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x \cdot y}=0$.

Definition 2. A vector $\mathrm{x} \in \mathbb{R}^{n}$ is said to be orthogonal to a nonempty set $Y \subset \mathbb{R}^{n}$ (denoted $\mathbf{x} \perp Y)$ if $\mathbf{x} \cdot \mathbf{y}=0$ for any $\mathbf{y} \in Y$.

Definition 3. Nonempty sets $X, Y \subset \mathbb{R}^{n}$ are said to be orthogonal (denoted $X \perp Y$) if $\mathbf{x} \cdot \mathbf{y}=0$ for any $\mathbf{x} \in X$ and $\mathbf{y} \in Y$.

Proposition 1 If $X, Y \in \mathbb{R}^{n}$ are orthogonal sets then either they are disjoint or $X \cap Y=\{\mathbf{0}\}$.

Proof: $\mathbf{v} \in X \cap Y \Longrightarrow \mathbf{v} \perp \mathbf{v} \Longrightarrow \mathbf{v} \cdot \mathbf{v}=0 \Longrightarrow \mathbf{v}=\mathbf{0}$.
Proposition 2 Let V be a subspace of \mathbb{R}^{n} and S be a spanning set for V. Then for any $\mathbf{x} \in \mathbb{R}^{n}$

$$
\mathbf{x} \perp S \Longrightarrow \mathbf{x} \perp V
$$

Proof: Any $\mathbf{v} \in V$ is represented as $\mathbf{v}=a_{1} \mathbf{v}_{1}+\cdots+a_{k} \mathbf{v}_{k}$, where $\mathbf{v}_{i} \in S$ and $a_{i} \in \mathbb{R}$. If $\mathbf{x} \perp S$ then

$$
\mathbf{x} \cdot \mathbf{v}=a_{1}\left(\mathbf{x} \cdot \mathbf{v}_{1}\right)+\cdots+a_{k}\left(\mathbf{x} \cdot \mathbf{v}_{k}\right)=0 \Longrightarrow \mathbf{x} \perp \mathbf{v} .
$$

Example. The vector $\mathbf{v}=(1,1,1)$ is orthogonal to the plane spanned by vectors $\mathbf{w}_{1}=(2,-3,1)$ and $\mathbf{w}_{2}=(0,1,-1)$ (because $\mathbf{v} \cdot \mathbf{w}_{1}=\mathbf{v} \cdot \mathbf{w}_{2}=0$).

Orthogonal complement

Definition. Let $S \subset \mathbb{R}^{n}$. The orthogonal complement of S, denoted S^{\perp}, is the set of all vectors $\mathbf{x} \in \mathbb{R}^{n}$ that are orthogonal to S. That is, S^{\perp} is the largest subset of \mathbb{R}^{n} orthogonal to S.

Theorem $1 S^{\perp}$ is a subspace of \mathbb{R}^{n}.
Note that $S \subset\left(S^{\perp}\right)^{\perp}$, hence $\operatorname{Span}(S) \subset\left(S^{\perp}\right)^{\perp}$.
Theorem $2\left(S^{\perp}\right)^{\perp}=\operatorname{Span}(S)$. In particular, for any subspace V we have $\left(V^{\perp}\right)^{\perp}=V$.

Example. Consider a line $L=\{(x, 0,0) \mid x \in \mathbb{R}\}$ and a plane $\Pi=\{(0, y, z) \mid y, z \in \mathbb{R}\}$ in \mathbb{R}^{3}.
Then $L^{\perp}=\Pi$ and $\Pi^{\perp}=L$.

Fundamental subspaces

Definition. Given an $m \times n$ matrix A, let

$$
\begin{aligned}
& N(A)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\} \\
& R(A)=\left\{\mathbf{b} \in \mathbb{R}^{m} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

$R(A)$ is the range of a linear mapping $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, $L(\mathbf{x})=A \mathbf{x} . \quad N(A)$ is the kernel of L.
Also, $N(A)$ is the nullspace of the matrix A while $R(A)$ is the column space of A. The row space of A is $R\left(A^{T}\right)$.
The subspaces $N(A), R\left(A^{T}\right) \subset \mathbb{R}^{n}$ and $R(A), N\left(A^{T}\right) \subset \mathbb{R}^{m}$ are fundamental subspaces associated to the matrix A.

Theorem $N(A)=R\left(A^{T}\right)^{\perp}, \quad N\left(A^{T}\right)=R(A)^{\perp}$. That is, the nullspace of a matrix is the orthogonal complement of its row space.
Proof: The equality $A \mathbf{x}=\mathbf{0}$ means that the vector \mathbf{x} is orthogonal to rows of the matrix A. Therefore $N(A)=S^{\perp}$, where S is the set of rows of A. It remains to note that $S^{\perp}=\operatorname{Span}(S)^{\perp}=R\left(A^{T}\right)^{\perp}$.

Corollary Let V be a subspace of \mathbb{R}^{n}. Then $\operatorname{dim} V+\operatorname{dim} V^{\perp}=n$.
Proof: Pick a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ for V. Let A be the $k \times n$ matrix whose rows are vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$. Then $V=R\left(A^{T}\right)$, hence $V^{\perp}=N(A)$. Consequently, $\operatorname{dim} V$ and $\operatorname{dim} V^{\perp}$ are rank and nullity of A. Therefore $\operatorname{dim} V+\operatorname{dim} V^{\perp}$ equals the number of columns of A, which is n.

Problem. Let V be the plane spanned by vectors $\mathbf{v}_{1}=(1,1,0)$ and $\mathbf{v}_{2}=(0,1,1)$. Find V^{\perp}.

The orthogonal complement to V is the same as the orthogonal complement of the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. A vector $\mathbf{u}=(x, y, z)$ belongs to the latter if and only if

$$
\left\{\begin{array} { l }
{ \mathbf { u } \cdot \mathbf { v } _ { 1 } = 0 } \\
{ \mathbf { u } \cdot \mathbf { v } _ { 2 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x+y=0 \\
y+z=0
\end{array}\right.\right.
$$

Alternatively, the subspace V is the row space of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right),
$$

hence V^{\perp} is the nullspace of A.
The general solution of the system (or, equivalently, the general element of the nullspace of A) is $(t,-t, t)$ $=t(1,-1,1), t \in \mathbb{R}$. Thus V^{\perp} is the straight line spanned by the vector $(1,-1,1)$.

Orthogonal projection

Theorem 1 Let V be a subspace of \mathbb{R}^{n}. Then any vector $\mathbf{x} \in \mathbb{R}^{n}$ is uniquely represented as
$\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in V$ and $\mathbf{o} \in V^{\perp}$.
Idea of the proof: Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be a basis for V and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ be a basis for V^{\perp}. Then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ is a basis for \mathbb{R}^{n}.

In the above expansion, \mathbf{p} is called the orthogonal projection of the vector \mathbf{x} onto the subspace V.

Theorem $2\|\mathbf{x}-\mathbf{v}\|>\|\mathbf{x}-\mathbf{p}\|$ for any $\mathbf{v} \neq \mathbf{p}$ in V.
Thus $\|\mathbf{o}\|=\|\mathbf{x}-\mathbf{p}\|=\min _{\mathbf{v} \in V}\|\mathbf{x}-\mathbf{v}\|$ is the
distance from the vector \mathbf{x} to the subspace V.

Orthogonal projection onto a vector

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, with $\mathbf{y} \neq \mathbf{0}$.
Then there exists a unique decomposition $\mathbf{x}=\mathbf{p}+\mathbf{o}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y}.

$\mathbf{p}=$ orthogonal projection of \mathbf{x} onto \mathbf{y}

Orthogonal projection onto a vector

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, with $\mathbf{y} \neq \mathbf{0}$.
Then there exists a unique decomposition $\mathbf{x}=\mathbf{p}+\mathbf{o}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y}.

We have $\mathbf{p}=\alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$. Then

$$
\begin{aligned}
& 0=\mathbf{o} \cdot \mathbf{y}=(\mathbf{x}-\alpha \mathbf{y}) \cdot \mathbf{y}=\mathbf{x} \cdot \mathbf{y}-\alpha \mathbf{y} \cdot \mathbf{y} . \\
\Longrightarrow & \alpha=\frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \Longrightarrow \quad \mathbf{p}=\frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}
\end{aligned}
$$

Problem. Find the distance from the point $\mathbf{x}=(3,1)$ to the line spanned by $\mathbf{y}=(2,-1)$.

Consider the decomposition $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where \mathbf{p} is parallel to \mathbf{y} while $\mathbf{o} \perp \mathbf{y}$. The required distance is the length of the orthogonal component \mathbf{o}.
$\mathbf{p}=\frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}=\frac{5}{5}(2,-1)=(2,-1)$,
$\mathbf{o}=\mathbf{x}-\mathbf{p}=(3,1)-(2,-1)=(1,2), \quad\|\mathbf{o}\|=\sqrt{5}$.
Problem. Find the point on the line $y=-x$ that is closest to the point $(3,4)$.

The required point is the projection \mathbf{p} of $\mathbf{v}=(3,4)$ on the vector $\mathbf{w}=(1,-1)$ spanning the line $y=-x$.

$$
\mathbf{p}=\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}=\frac{-1}{2}(1,-1)=\left(-\frac{1}{2}, \frac{1}{2}\right)
$$

