MATH 304
 Linear Algebra

Lecture 31:
Eigenvalues and eigenvectors (continued).

Eigenvalues and eigenvectors of a matrix

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an eigenvalue of the matrix A if $A \mathbf{v}=\lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^{n}$. The vector \mathbf{v} is called an eigenvector of A belonging to (or associated with) the eigenvalue λ.

If λ is an eigenvalue of A then the nullspace $N(A-\lambda I)$, which is nontrivial, is called the eigenspace of A corresponding to λ. The eigenspace consists of all eigenvectors belonging to the eigenvalue λ plus the zero vector.

Characteristic equation

Definition. Given a square matrix A, the equation $\operatorname{det}(A-\lambda /)=0$ is called the characteristic equation of A.
Eigenvalues λ of A are roots of the characteristic equation.

If A is an $n \times n$ matrix then $p(\lambda)=\operatorname{det}(A-\lambda I)$ is a polynomial of degree n. It is called the characteristic polynomial of A.

Theorem Any $n \times n$ matrix has at most n eigenvalues.

Example. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 1 and 3 .
- The eigenspace of A associated with the eigenvalue 1 is the line $t(-1,1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line $t(1,1)$.
- Eigenvectors $\mathbf{v}_{1}=(-1,1)$ and $\mathbf{v}_{2}=(1,1)$ of the matrix A form an orthogonal basis for \mathbb{R}^{2}.
- Geometrically, the mapping $\mathbf{x} \mapsto A \mathbf{x}$ is a stretch by a factor of 3 away from the line $x+y=0$ in the orthogonal direction.

Example. $A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.
Characteristic equation:

$$
\left|\begin{array}{ccc}
1-\lambda & 1 & -1 \\
1 & 1-\lambda & 1 \\
0 & 0 & 2-\lambda
\end{array}\right|=0
$$

Expand the determinant by the 3rd row:

$$
(2-\lambda)\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|=0
$$

$\left((1-\lambda)^{2}-1\right)(2-\lambda)=0 \Longleftrightarrow-\lambda(2-\lambda)^{2}=0$
$\Longrightarrow \lambda_{1}=0, \quad \lambda_{2}=2$.

$$
A \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Convert the matrix to reduced row echelon form:

$$
\begin{gathered}
\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & 1 \\
0 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 0 & 2 \\
0 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
A \mathbf{x}=\mathbf{0}
\end{gathered} \Longleftrightarrow\left\{\begin{array}{l}
x+y=0, \\
z=0 .
\end{array}\right.
$$

The general solution is $(-t, t, 0)=t(-1,1,0)$, $t \in \mathbb{R}$. Thus $\mathbf{v}_{1}=(-1,1,0)$ is an eigenvector associated with the eigenvalue 0 . The corresponding eigenspace is the line spanned by \mathbf{v}_{1}.
$(A-2 I) \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rrr}-1 & 1 & -1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
$\Longleftrightarrow\left(\begin{array}{rrr}1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \Longleftrightarrow x-y+z=0$.
The general solution is $x=t-s, y=t, \quad z=s$, where $t, s \in \mathbb{R}$. Equivalently,

$$
\mathbf{x}=(t-s, t, s)=t(1,1,0)+s(-1,0,1)
$$

Thus $\mathbf{v}_{2}=(1,1,0)$ and $\mathbf{v}_{3}=(-1,0,1)$ are eigenvectors associated with the eigenvalue 2.
The corresponding eigenspace is the plane spanned by \mathbf{v}_{2} and \mathbf{v}_{3}.

Summary. $\quad A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 0 and 2 .
- The eigenvalue 0 is simple: the corresponding eigenspace is a line.
- The eigenvalue 2 is of multiplicity 2 : the corresponding eigenspace is a plane.
- Eigenvectors $\mathbf{v}_{1}=(-1,1,0), \mathbf{v}_{2}=(1,1,0)$, and $\mathbf{v}_{3}=(-1,0,1)$ of the matrix A form a basis for \mathbb{R}^{3}.
- Geometrically, the map $\mathbf{x} \mapsto A \mathbf{x}$ is the projection on the plane $\operatorname{Span}\left(\mathbf{v}_{2}, \mathbf{v}_{3}\right)$ along the lines parallel to \mathbf{v}_{1} with the subsequent scaling by a factor of 2 .

Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and $L: V \rightarrow V$ be a linear operator. A number λ is called an eigenvalue of the operator L if $L(\mathbf{v})=\lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector \mathbf{v} is called an eigenvector of L associated with the eigenvalue λ.
(If V is a functional space then eigenvectors are also called eigenfunctions.)

If $V=\mathbb{R}^{n}$ then the linear operator L is given by $L(\mathbf{x})=A \mathbf{x}$, where A is an $n \times n$ matrix.
In this case, eigenvalues and eigenvectors of the operator L are precisely eigenvalues and eigenvectors of the matrix A.

Eigenspaces

Let $L: V \rightarrow V$ be a linear operator.
For any $\lambda \in \mathbb{R}$, let V_{λ} denotes the set of all solutions of the equation $L(\mathbf{x})=\lambda \mathbf{x}$.
Then V_{λ} is a subspace of V since V_{λ} is the kernel of a linear operator given by $\mathbf{x} \mapsto L(\mathbf{x})-\lambda \mathbf{x}$.
V_{λ} minus the zero vector is the set of all eigenvectors of L associated with the eigenvalue λ. In particular, $\lambda \in \mathbb{R}$ is an eigenvalue of L if and only if $V_{\lambda} \neq\{\mathbf{0}\}$.
If $V_{\lambda} \neq\{\mathbf{0}\}$ then it is called the eigenspace of L corresponding to the eigenvalue λ.

Example. $\quad V=C^{\infty}(\mathbb{R}), D: V \rightarrow V, D f=f^{\prime}$.
A function $f \in C^{\infty}(\mathbb{R})$ is an eigenfunction of the operator D belonging to an eigenvalue λ if $f^{\prime}(x)=\lambda f(x)$ for all $x \in \mathbb{R}$.
It follows that $f(x)=c e^{\lambda x}$, where c is a nonzero constant.

Thus each $\lambda \in \mathbb{R}$ is an eigenvalue of D.
The corresponding eigenspace is spanned by $e^{\lambda x}$.

Example. $\quad V=C^{\infty}(\mathbb{R}), L: V \rightarrow V, L f=f^{\prime \prime}$.
$L f=\lambda f \Longleftrightarrow f^{\prime \prime}(x)-\lambda f(x)=0$ for all $x \in \mathbb{R}$.
It follows that each $\lambda \in \mathbb{R}$ is an eigenvalue of L and the corresponding eigenspace V_{λ} is two-dimensional.
If $\lambda>0$ then $V_{\lambda}=\operatorname{Span}(\exp (\sqrt{\lambda} x), \exp (-\sqrt{\lambda} x))$.
If $\lambda<0$ then $V_{\lambda}=\operatorname{Span}(\sin (\sqrt{-\lambda} x), \cos (\sqrt{-\lambda} x))$.
If $\lambda=0$ then $V_{\lambda}=\operatorname{Span}(1, x)$.

Let V be a vector space and $L: V \rightarrow V$ be a linear operator.
Proposition 1 If $\mathbf{v} \in V$ is an eigenvector of the operator L then the associated eigenvalue is unique.

Proof: Suppose that $L(\mathbf{v})=\lambda_{1} \mathbf{v}$ and $L(\mathbf{v})=\lambda_{2} \mathbf{v}$. Then $\lambda_{1} \mathbf{v}=\lambda_{2} \mathbf{v} \Longrightarrow\left(\lambda_{1}-\lambda_{2}\right) \mathbf{v}=\mathbf{0} \Longrightarrow \lambda_{1}-\lambda_{2}=0 \Longrightarrow \lambda_{1}=\lambda_{2}$.

Proposition 2 Suppose \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors of L associated with different eigenvalues λ_{1} and λ_{2}. Then \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent.

Proof: For any scalar $t \neq 0$ the vector $t \mathbf{v}_{1}$ is also an eigenvector of L associated with the eigenvalue λ_{1}. Since $\lambda_{2} \neq \lambda_{1}$, it follows that $\mathbf{v}_{2} \neq t \mathbf{v}_{1}$. That is, \mathbf{v}_{2} is not a scalar multiple of \mathbf{v}_{1}. Similarly, \mathbf{v}_{1} is not a scalar multiple of \mathbf{v}_{2}.

Let $L: V \rightarrow V$ be a linear operator.
Proposition 3 If $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are eigenvectors of L associated with distinct eigenvalues λ_{1}, λ_{2}, and λ_{3}, then they are linearly independent.
Proof: Suppose that $t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3}=\mathbf{0}$ for some $t_{1}, t_{2}, t_{3} \in \mathbb{R}$. Then

$$
\begin{gathered}
L\left(t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3}\right)=\mathbf{0}, \\
t_{1} L\left(\mathbf{v}_{1}\right)+t_{2} L\left(\mathbf{v}_{2}\right)+t_{3} L\left(\mathbf{v}_{3}\right)=\mathbf{0}, \\
t_{1} \lambda_{1} \mathbf{v}_{1}+t_{2} \lambda_{2} \mathbf{v}_{2}+t_{3} \lambda_{3} \mathbf{v}_{3}=\mathbf{0} .
\end{gathered}
$$

It follows that

$$
\begin{gathered}
t_{1} \lambda_{1} \mathbf{v}_{1}+t_{2} \lambda_{2} \mathbf{v}_{2}+t_{3} \lambda_{3} \mathbf{v}_{3}-\lambda_{3}\left(t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3}\right)=\mathbf{0} \\
\quad \Longrightarrow t_{1}\left(\lambda_{1}-\lambda_{3}\right) \mathbf{v}_{1}+t_{2}\left(\lambda_{2}-\lambda_{3}\right) \mathbf{v}_{2}=\mathbf{0} .
\end{gathered}
$$

By the above, \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent.
Hence $t_{1}\left(\lambda_{1}-\lambda_{3}\right)=t_{2}\left(\lambda_{2}-\lambda_{3}\right)=0 \Longrightarrow t_{1}=t_{2}=0$
Then $t_{3}=0$ as well.

Theorem If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Corollary 1 Let A be an $n \times n$ matrix such that the characteristic equation $\operatorname{det}(A-\lambda I)=0$ has n distinct real roots. Then \mathbb{R}^{n} has a basis consisting of eigenvectors of A.

Proof: Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be distinct real roots of the characteristic equation. Any λ_{i} is an eigenvalue of A, hence there is an associated eigenvector \mathbf{v}_{i}. By the theorem, vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly independent. Therefore they form a basis for \mathbb{R}^{n}.

Corollary 2 If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct real numbers, then the functions $e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}$ are linearly independent.

Proof: Consider a linear operator
$D: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ given by $D f=f^{\prime}$.
Then $e^{\lambda_{1} x}, \ldots, e^{\lambda_{k} x}$ are eigenfunctions of D associated with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. By the theorem, the eigenfunctions are linearly independent.

