MATH 304
 Linear Algebra
 Lecture 33:
 Diagonalization (continued).

Diagonalization

Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of L with respect to some basis is diagonal;
- there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these conditions.

Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as $A=U B U^{-1}$, where the matrix B is diagonal;
- there exists a basis for \mathbb{R}^{n} formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.
Otherwise A is called defective.

To diagonalize an $n \times n$ matrix A is to find a diagonal matrix B and an invertible matrix U such that $A=U B U^{-1}$.

Suppose there exists a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ for \mathbb{R}^{n} consisting of eigenvectors of A. That is, $A \mathbf{v}_{k}=\lambda_{k} \mathbf{v}_{k}$, where $\lambda_{k} \in \mathbb{R}$.
Then $A=U B U^{-1}$, where $B=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and U is a transition matrix whose columns are vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

Example. $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$.
Eigenvalues: $\lambda_{1}=4, \lambda_{2}=1$.
Associated eigenvectors: $\mathbf{v}_{1}=\binom{1}{0}, \mathbf{v}_{2}=\binom{-1}{1}$.
Thus $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)
$$

Matrix polynomials

Definition. Given an $n \times n$ matrix A, we let

$$
A^{2}=A A, \quad A^{3}=A A A, \ldots, \quad A^{k}=\underbrace{A A \ldots A}_{k \text { times }}, \ldots
$$

Also, let $A^{1}=A$ and $A^{0}=I_{n}$.
Associativity of matrix multiplication implies that all powers A^{k} are well defined and $A^{j} A^{k}=A^{j+k}$ for all $j, k \geq 0$. In particular, all powers of A commute.

Definition. For any polynomial

$$
\begin{aligned}
p(x) & =c_{0} x^{m}+c_{1} x^{m-1}+\cdots+c_{m-1} x+c_{m} \\
\text { let } p(A) & =c_{0} A^{m}+c_{1} A^{m-1}+\cdots+c_{m-1} A+c_{m} I_{n}
\end{aligned}
$$

Theorem If $A=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, then $p(A)=\operatorname{diag}\left(p\left(a_{1}\right), p\left(a_{2}\right), \ldots, p\left(a_{n}\right)\right)$.

Now suppose that the matrix A is diagonalizable. Then $A=U B U^{-1}$ for some diagonal matrix B and an invertible matrix U.
$A^{2}=U B U^{-1} U B U^{-1}=U B^{2} U^{-1}$,
$A^{3}=A^{2} A=U B^{2} U^{-1} U B U^{-1}=U B^{3} U^{-1}$.
Likewise, $A^{n}=U B^{n} U^{-1}$ for any $n \geq 1$.
$I+2 A-3 A^{2}=U I U^{-1}+2 U B U^{-1}-3 U B^{2} U^{-1}$
$=U\left(I+2 B-3 B^{2}\right) U^{-1}$.
Likewise, $p(A)=U p(B) U^{-1}$ for any polynomial $p(x)$.

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find a matrix C such that $C^{2}=A$.

We know that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Suppose that $D^{2}=B$ for some matrix D. Let $C=U D U^{-1}$. Then $C^{2}=U D U^{-1} U D U^{-1}=U D^{2} U^{-1}=U B U^{-1}=A$.
We can take $D=\left(\begin{array}{cc}\sqrt{4} & 0 \\ 0 & \sqrt{1}\end{array}\right)=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$.
Then $C=\left(\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)$.

Initial value problem for a system of linear ODEs:
$\left\{\begin{array}{l}\frac{d x}{d t}=4 x+3 y, \\ \frac{d y}{d t}=y,\end{array}\right.$

$$
x(0)=1, \quad y(0)=1
$$

The system can be rewritten in vector form:

$$
\frac{d \mathbf{v}}{d t}=A \mathbf{v}, \quad \text { where } A=\left(\begin{array}{ll}
4 & 3 \\
0 & 1
\end{array}\right), \quad \mathbf{v}=\binom{x}{y} .
$$

Matrix A is diagonalizable: $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Let $\mathbf{w}=\binom{w_{1}}{w_{2}}$ be coordinates of the vector \mathbf{v} relative to the basis $\mathbf{v}_{1}=(1,0), \mathbf{v}_{2}=(-1,1)$ of eigenvectors of A. Then $\mathbf{v}=U \mathbf{w} \Longrightarrow \mathbf{w}=U^{-1} \mathbf{v}$.

It follows that

$$
\frac{d \mathbf{w}}{d t}=\frac{d}{d t}\left(U^{-1} \mathbf{v}\right)=U^{-1} \frac{d \mathbf{v}}{d t}=U^{-1} A \mathbf{v}=U^{-1} A U \mathbf{w} .
$$

Hence $\quad \frac{d \mathbf{w}}{d t}=B \mathbf{w} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}\frac{d w_{1}}{d t}=4 w_{1}, \\ \frac{d w_{2}}{d t}=w_{2} .\end{array}\right.$
General solution: $w_{1}(t)=c_{1} e^{4 t}, w_{2}(t)=c_{2} e^{t}$, where $c_{1}, c_{2} \in \mathbb{R}$. Initial condition:

$$
\mathbf{w}(0)=U^{-1} \mathbf{v}(0)=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)^{-1}\binom{1}{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{1} .
$$

Thus $w_{1}(t)=2 e^{4 t}, w_{2}(t)=e^{t}$. Then

$$
\binom{x(t)}{y(t)}=U \mathbf{w}(t)=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)\binom{2 e^{4 t}}{e^{t}}=\binom{2 e^{4 t}-e^{t}}{e^{t}} .
$$

- Initial value problem for a linear ODE:

$$
\frac{d y}{d t}=2 y, \quad y(0)=3 .
$$

Solution: $y(t)=3 e^{2 t}$.

- Initial value problem for a system of linear ODEs:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=2 x+3 y, \\
\frac{d y}{d t}=x+4 y,
\end{array} \quad x(0)=2, \quad y(0)=1 .\right.
$$

The system can be rewritten in vector form

$$
\frac{d}{d t}\binom{x}{y}=A\binom{x}{y}, \text { where } A=\left(\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right) .
$$

Solution: $\binom{x(t)}{y(t)}=e^{t A}\binom{2}{1}$.
What is $e^{t A}$?

Fibonacci numbers

The Fibonacci numbers are a sequence of integers $f_{1}, f_{2}, f_{3}, \ldots$ defined recursively by $f_{1}=f_{2}=1, f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 3$.

$$
1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots
$$

Problem. Find $\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}}$.
For any integer $n \geq 1$ let $\mathbf{v}_{n}=\binom{f_{n+1}}{f_{n}}$. Then

$$
\binom{f_{n+2}}{f_{n+1}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{f_{n+1}}{f_{n}}
$$

That is, $\mathbf{v}_{n+1}=A \mathbf{v}_{n}$, where $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$.
In particular, $\mathbf{v}_{2}=A \mathbf{v}_{1}, \mathbf{v}_{3}=A \mathbf{v}_{2}=A^{2} \mathbf{v}_{1}, \mathbf{v}_{4}=A \mathbf{v}_{3}=A^{3} \mathbf{v}_{1}$. In general, $\mathbf{v}_{n}=A^{n-1} \mathbf{v}_{1}$.

Characteristic equation of the matrix A :
$\left|\begin{array}{cc}1-\lambda & 1 \\ 1 & -\lambda\end{array}\right|=0 \Longleftrightarrow \lambda^{2}-\lambda-1=0$.
Eigenvalues: $\lambda_{1}=\frac{1+\sqrt{5}}{2}, \quad \lambda_{2}=\frac{1-\sqrt{5}}{2}$.
Let $\mathbf{w}_{1}=\binom{x_{1}}{y_{1}}$ and $\mathbf{w}_{2}=\binom{x_{2}}{y_{2}}$ be eigenvectors of A associated with the eigenvalues λ_{1} and λ_{2}. Then $\mathbf{w}_{1}, \mathbf{w}_{2}$ is a basis for \mathbb{R}^{2}.
In particular, $\mathbf{v}_{1}=\binom{1}{1}=c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}$ for some $c_{1}, c_{2} \in \mathbb{R}$. It follows that

$$
\begin{gathered}
\mathbf{v}_{n}=A^{n-1} \mathbf{v}_{1}=A^{n-1}\left(c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}\right) \\
=c_{1} A^{n-1} \mathbf{w}_{1}+c_{2} A^{n-1} \mathbf{w}_{2}=c_{1} \lambda_{1}^{n-1} \mathbf{w}_{1}+c_{2} \lambda_{2}^{n-1} \mathbf{w}_{2} .
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{v}_{n} & =c_{1} \lambda_{1}^{n-1} \mathbf{w}_{1}+c_{2} \lambda_{2}^{n-1} \mathbf{w}_{2} \\
\Longrightarrow \quad f_{n} & =c_{1} \lambda_{1}^{n-1} y_{1}+c_{2} \lambda_{2}^{n-1} y_{2} .
\end{aligned}
$$

Recall that $\lambda_{1}=\frac{1+\sqrt{5}}{2}, \quad \lambda_{2}=\frac{1-\sqrt{5}}{2}$.
We have $\lambda_{1}>1$ and $-1<\lambda_{2}<0$.
Therefore

$$
\begin{gathered}
\frac{f_{n+1}}{f_{n}}=\frac{c_{1} \lambda_{1}^{n} y_{1}+c_{2} \lambda_{2}^{n} y_{2}}{c_{1} \lambda_{1}^{n-1} y_{1}+c_{2} \lambda_{2}^{n-1} y_{2}} \\
=\lambda_{1} \frac{c_{1} y_{1}+c_{2}\left(\lambda_{2} / \lambda_{1}\right)^{n} y_{2}}{c_{1} y_{1}+c_{2}\left(\lambda_{2} / \lambda_{1}\right)^{n-1} y_{2}} \rightarrow \lambda_{1} \frac{c_{1} y_{1}}{c_{1} y_{1}}=\lambda_{1}
\end{gathered}
$$

provided that $c_{1} y_{1} \neq 0$.
Thus $\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}}=\lambda_{1}=\frac{1+\sqrt{5}}{2}$.

