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Linear Algebra

Lecture 33:

Diagonalization (continued).



Diagonalization

Let L be a linear operator on a finite-dimensional vector space
V . Then the following conditions are equivalent:

• the matrix of L with respect to some basis is diagonal;
• there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these
conditions.

Let A be an n×n matrix. Then the following conditions are
equivalent:

• A is the matrix of a diagonalizable operator;
• A is similar to a diagonal matrix, i.e., it is represented as
A = UBU−1, where the matrix B is diagonal;
• there exists a basis for R

n formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.
Otherwise A is called defective.



To diagonalize an n×n matrix A is to find a diagonal matrix B

and an invertible matrix U such that A = UBU−1.

Suppose there exists a basis v1, . . . , vn for R
n consisting of

eigenvectors of A. That is, Avk = λkvk , where λk ∈ R.

Then A = UBU−1, where B = diag(λ1, λ2, . . . , λn) and U is
a transition matrix whose columns are vectors v1, v2, . . . , vn.

Example. A =

(
4 3
0 1

)

.

Eigenvalues: λ1 = 4, λ2 = 1.

Associated eigenvectors: v1 =

(
1
0

)

, v2 =

(
−1

1

)

.

Thus A = UBU−1, where

B =

(
4 0
0 1

)

, U =

(
1 −1
0 1

)

.



Matrix polynomials

Definition. Given an n×n matrix A, we let

A2 = AA, A3 = AAA, . . . , Ak = AA . . . A︸ ︷︷ ︸

k times

, . . .

Also, let A1 = A and A0 = In.

Associativity of matrix multiplication implies that all powers
Ak are well defined and AjAk = Aj+k for all j , k ≥ 0. In
particular, all powers of A commute.

Definition. For any polynomial

p(x) = c0x
m + c1x

m−1 + · · · + cm−1x + cm,

let p(A) = c0A
m + c1A

m−1 + · · · + cm−1A + cmIn.

Theorem If A = diag(a1, a2, . . . , an), then
p(A) = diag

(
p(a1), p(a2), . . . , p(an)

)
.



Now suppose that the matrix A is diagonalizable.
Then A = UBU−1 for some diagonal matrix B and
an invertible matrix U .

A2 = UBU−1UBU−1 = UB2U−1,
A3 = A2A = UB2U−1UBU−1 = UB3U−1.
Likewise, An = UBnU−1 for any n ≥ 1.

I + 2A − 3A2 = UIU−1 + 2UBU−1 − 3UB2U−1

= U(I + 2B − 3B2)U−1.

Likewise, p(A) = Up(B)U−1 for any polynomial
p(x).



Problem. Let A =

(
4 3
0 1

)

. Find a matrix C

such that C 2 = A.

We know that A = UBU−1, where

B =

(
4 0
0 1

)

, U =

(
1 −1
0 1

)

.

Suppose that D2 = B for some matrix D. Let C = UDU−1.
Then C 2 = UDU−1UDU−1 = UD2U−1 = UBU−1 = A.

We can take D =

(√
4 0

0
√

1

)

=

(
2 0
0 1

)

.

Then C =

(
1 −1
0 1

) (
2 0
0 1

) (
1 1
0 1

)

=

(
2 1
0 1

)

.



Initial value problem for a system of linear ODEs:
{

dx
dt

= 4x + 3y ,
dy
dt

= y ,
x(0) = 1, y(0) = 1.

The system can be rewritten in vector form:

dv

dt
= Av, where A =

(
4 3
0 1

)

, v =

(
x

y

)

.

Matrix A is diagonalizable: A = UBU−1, where

B =

(
4 0
0 1

)

, U =

(
1 −1
0 1

)

.

Let w =

(
w1

w2

)

be coordinates of the vector v relative to the

basis v1 = (1, 0), v2 = (−1, 1) of eigenvectors of A. Then

v = Uw =⇒ w = U−1v.



It follows that

dw

dt
=

d

dt
(U−1v) = U−1

dv

dt
= U−1Av = U−1AUw.

Hence
dw

dt
= Bw ⇐⇒

{
dw1

dt
= 4w1,

dw2

dt
= w2.

General solution: w1(t) = c1e
4t , w2(t) = c2e

t , where c1, c2 ∈ R.

Initial condition:

w(0) = U−1v(0) =

(
1 −1
0 1

)−1 (
1
1

)

=

(
1 1
0 1

)(
1
1

)

=

(
2
1

)

.

Thus w1(t) = 2e4t , w2(t) = et . Then
(

x(t)
y(t)

)

= Uw(t) =

(
1 −1
0 1

)(
2e4t

et

)

=

(
2e4t−et

et

)

.



• Initial value problem for a linear ODE:

dy

dt
= 2y , y(0) = 3.

Solution: y(t) = 3e2t .

• Initial value problem for a system of linear ODEs:
{

dx
dt

= 2x + 3y ,
dy

dt
= x + 4y ,

x(0) = 2, y(0) = 1.

The system can be rewritten in vector form

d

dt

(
x

y

)

= A

(
x

y

)

, where A =

(
2 3
1 4

)

.

Solution:

(
x(t)
y(t)

)

= etA

(
2
1

)

.

What is etA?



Fibonacci numbers

The Fibonacci numbers are a sequence of integers f1, f2, f3, . . .
defined recursively by f1 = f2 = 1, fn = fn−1 + fn−2 for n ≥ 3.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

Problem. Find lim
n→∞

fn+1

fn
.

For any integer n ≥ 1 let vn =

(
fn+1

fn

)

. Then

(
fn+2

fn+1

)

=

(
1 1
1 0

) (
fn+1

fn

)

.

That is, vn+1 = Avn, where A =

(
1 1
1 0

)

.

In particular, v2 = Av1, v3 = Av2 = A2v1, v4 = Av3 = A3v1.
In general, vn = An−1v1.



Characteristic equation of the matrix A:
∣
∣
∣
∣

1 − λ 1
1 −λ

∣
∣
∣
∣
= 0 ⇐⇒ λ2 − λ − 1 = 0.

Eigenvalues: λ1 = 1+
√

5

2
, λ2 = 1−

√
5

2
.

Let w1 =

(
x1

y1

)

and w2 =

(
x2

y2

)

be eigenvectors of A

associated with the eigenvalues λ1 and λ2. Then w1,w2 is a
basis for R

2.

In particular, v1 =

(
1
1

)

= c1w1 + c2w2 for some c1, c2 ∈ R.

It follows that

vn = An−1v1 = An−1(c1w1 + c2w2)

= c1A
n−1w1 + c2A

n−1w2 = c1λ
n−1

1 w1 + c2λ
n−1

2 w2.



vn = c1λ
n−1

1
w1 + c2λ

n−1

2
w2

=⇒ fn = c1λ
n−1

1
y1 + c2λ

n−1

2
y2.

Recall that λ1 = 1+
√

5

2
, λ2 = 1−

√
5

2
.

We have λ1 > 1 and −1 < λ2 < 0.

Therefore
fn+1

fn
=

c1λ
n
1y1 + c2λ

n
2y2

c1λ
n−1

1
y1 + c2λ

n−1

2
y2

= λ1

c1y1 + c2(λ2/λ1)
ny2

c1y1 + c2(λ2/λ1)n−1y2

→ λ1

c1y1

c1y1

= λ1

provided that c1y1 6= 0.

Thus lim
n→∞

fn+1

fn
= λ1 = 1+

√
5

2
.


