
MATH 304

Linear Algebra

Lecture 34:
Review for Test 2.



Topics for Test 2

Coordinates and linear transformations (Leon 3.5, 4.1–4.3)

• Coordinates relative to a basis
• Change of basis, transition matrix
• Matrix transformations
• Matrix of a linear mapping

Orthogonality (Leon 5.1–5.6)

• Inner products and norms
• Orthogonal complement, orthogonal projection
• Least squares problems
• The Gram-Schmidt orthogonalization process

Eigenvalues and eigenvectors (Leon 6.1, 6.3)

• Eigenvalues, eigenvectors, eigenspaces
• Characteristic polynomial
• Diagonalization



Sample problems for Test 2

Problem 1 (15 pts.) Let M2,2(R) denote the vector space
of 2 × 2 matrices with real entries. Consider a linear operator
L : M2,2(R) → M2,2(R) given by

L

(

x y
z w

)

=

(

x y
z w

) (

1 2
3 4

)

.

Find the matrix of the operator L with respect to the basis

E1 =

(

1 0
0 0

)

, E2 =

(

0 1
0 0

)

, E3 =

(

0 0
1 0

)

, E4 =

(

0 0
0 1

)

.



Problem 2 (20 pts.) Find a linear polynomial which is the
best least squares fit to the following data:

x −2 −1 0 1 2
f (x) −3 −2 1 2 5

Problem 3 (25 pts.) Let V be a subspace of R
4 spanned

by the vectors x1 = (1, 1, 1, 1) and x2 = (1, 0, 3, 0).

(i) Find an orthonormal basis for V .
(ii) Find an orthonormal basis for the orthogonal complement
V⊥.



Problem 4 (30 pts.) Let A =





1 2 0
1 1 1
0 2 1



.

(i) Find all eigenvalues of the matrix A.
(ii) For each eigenvalue of A, find an associated eigenvector.
(iii) Is the matrix A diagonalizable? Explain.
(iv) Find all eigenvalues of the matrix A2.

Bonus Problem 5 (15 pts.) Let L : V → W be a linear
mapping of a finite-dimensional vector space V to a vector
space W . Show that

dim Range(L) + dim ker(L) = dim V .



Problem 1. Let M2,2(R) denote the vector space of 2×2
matrices with real entries. Consider a linear operator
L : M2,2(R) → M2,2(R) given by

L

(

x y
z w

)

=

(

x y
z w

) (

1 2
3 4

)

.

Find the matrix of the operator L with respect to the basis

E1 =

(

1 0
0 0

)

, E2 =

(

0 1
0 0

)

, E3 =

(

0 0
1 0

)

, E4 =

(

0 0
0 1

)

.

Let ML denote the desired matrix.

By definition, ML is a 4×4 matrix whose columns are
coordinates of the matrices L(E1), L(E2), L(E3), L(E4)
with respect to the basis E1, E2, E3, E4.



L(E1) =

(

1 0
0 0

) (

1 2
3 4

)

=

(

1 2
0 0

)

= 1E1+2E2+0E3+0E4,

L(E2) =

(

0 1
0 0

) (

1 2
3 4

)

=

(

3 4
0 0

)

= 3E1+4E2+0E3+0E4,

L(E3) =

(

0 0
1 0

) (

1 2
3 4

)

=

(

0 0
1 2

)

= 0E1+0E2+1E3+2E4,

L(E4) =

(

0 0
0 1

) (

1 2
3 4

)

=

(

0 0
3 4

)

= 0E1+0E2+3E3+4E4.

It follows that

ML =









1 3 0 0
2 4 0 0
0 0 1 3
0 0 2 4









.



Thus the relation
(

x1 y1

z1 w1

)

=

(

x y
z w

) (

1 2
3 4

)

is equivalent to the relation








x1

y1

z1

w1









=









1 3 0 0
2 4 0 0
0 0 1 3
0 0 2 4

















x
y
z
w









.



Problem 2. Find a linear polynomial which is the best least
squares fit to the following data:

x −2 −1 0 1 2
f (x) −3 −2 1 2 5

We are looking for a function f (x) = c1 + c2x , where c1, c2

are unknown coefficients. The data of the problem give rise
to an overdetermined system of linear equations in variables c1

and c2:






















c1 − 2c2 = −3,
c1 − c2 = −2,
c1 = 1,
c1 + c2 = 2,
c1 + 2c2 = 5.

This system is inconsistent.



We can represent the system as a matrix equation Ac = y,
where

A =













1 −2

1 −1

1 0

1 1

1 2













, c =

(

c1

c2

)

, y =













−3

−2

1

2

5













.

The least squares solution c of the above system is a solution
of the normal system ATAc = ATy:

(

1 1 1 1 1

−2 −1 0 1 2

)













1 −2

1 −1

1 0

1 1

1 2













(

c1

c2

)

=

(

1 1 1 1 1

−2 −1 0 1 2

)













−3

−2

1

2

5













⇐⇒
(

5 0

0 10

)(

c1

c2

)

=

(

3

20

)

⇐⇒
{

c1 = 3/5

c2 = 2

Thus the function f (x) = 3

5
+ 2x is the best least squares fit

to the above data among linear polynomials.





Problem 3. Let V be a subspace of R
4 spanned by the

vectors x1 = (1, 1, 1, 1) and x2 = (1, 0, 3, 0).

(i) Find an orthonormal basis for V .

First we apply the Gram-Schmidt orthogonalization process to
vectors x1, x2 and obtain an orthogonal basis v1, v2 for the
subspace V :

v1 = x1 = (1, 1, 1, 1),

v2 = x2−
x2 · v1

v1 · v1

v1 = (1, 0, 3, 0)−4

4
(1, 1, 1, 1) = (0,−1, 2,−1).

Then we normalize vectors v1, v2 to obtain an orthonormal
basis w1,w2 for V :

‖v1‖ = 2 =⇒ w1 = v1

‖v1‖ = 1

2
(1, 1, 1, 1)

‖v2‖ =
√

6 =⇒ w2 = v2

‖v2‖ = 1√
6
(0,−1, 2,−1)



Problem 3. Let V be a subspace of R
4 spanned by the

vectors x1 = (1, 1, 1, 1) and x2 = (1, 0, 3, 0).

(ii) Find an orthonormal basis for the orthogonal complement
V⊥.

Since the subspace V is spanned by vectors (1, 1, 1, 1) and
(1, 0, 3, 0), it is the row space of the matrix

A =

(

1 1 1 1
1 0 3 0

)

.

Then the orthogonal complement V⊥ is the nullspace of A.
To find the nullspace, we convert the matrix A to reduced row
echelon form:

(

1 1 1 1
1 0 3 0

)

→
(

1 0 3 0
1 1 1 1

)

→
(

1 0 3 0
0 1 −2 1

)

.



Hence a vector (x1, x2, x3, x4) ∈ R
4 belongs to V⊥ if and only

if

(

1 0 3 0
0 1 −2 1

)









x1

x2

x3

x4









=

(

0
0

)

⇐⇒
{

x1 + 3x3 = 0
x2 − 2x3 + x4 = 0

⇐⇒
{

x1 = −3x3

x2 = 2x3 − x4

The general solution of the system is (x1, x2, x3, x4) =
= (−3t, 2t − s, t, s) = t(−3, 2, 1, 0) + s(0,−1, 0, 1), where
t, s ∈ R.

It follows that V⊥ is spanned by vectors x3 = (0,−1, 0, 1)
and x4 = (−3, 2, 1, 0).



The vectors x3 = (0,−1, 0, 1) and x4 = (−3, 2, 1, 0) form a
basis for the subspace V⊥.

It remains to orthogonalize and normalize this basis:

v3 = x3 = (0,−1, 0, 1),

v4 = x4 −
x4 · v3

v3 · v3

v3 = (−3, 2, 1, 0) − −2

2
(0,−1, 0, 1)

= (−3, 1, 1, 1),

‖v3‖ =
√

2 =⇒ w3 = v3

‖v3‖ = 1√
2
(0,−1, 0, 1),

‖v4‖ =
√

12 = 2
√

3 =⇒ w4 = v4

‖v4‖ = 1

2
√

3
(−3, 1, 1, 1).

Thus the vectors w3 = 1√
2
(0,−1, 0, 1) and

w4 = 1

2
√

3
(−3, 1, 1, 1) form an orthonormal basis for V⊥.



Problem 3. Let V be a subspace of R
4 spanned by the

vectors x1 = (1, 1, 1, 1) and x2 = (1, 0, 3, 0).

(i) Find an orthonormal basis for V .
(ii) Find an orthonormal basis for the orthogonal complement
V⊥.

Alternative solution: First we extend the set x1, x2 to a basis
x1, x2, x3, x4 for R

4. Then we orthogonalize and normalize
the latter. This yields an orthonormal basis w1,w2,w3,w4

for R
4.

By construction, w1,w2 is an orthonormal basis for V .
It follows that w3,w4 is an orthonormal basis for V⊥.



The set x1 = (1, 1, 1, 1), x2 = (1, 0, 3, 0) can be extended to
a basis for R

4 by adding two vectors from the standard basis.

For example, we can add vectors e3 = (0, 0, 1, 0) and
e4 = (0, 0, 0, 1). To show that x1, x2, e3, e4 is indeed a basis
for R

4, we check that the matrix whose rows are these vectors
is nonsingular:

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
1 0 3 0
0 0 1 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

1 3 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

= −1 6= 0.



To orthogonalize the basis x1, x2, e3, e4, we apply the
Gram-Schmidt process:

v1 = x1 = (1, 1, 1, 1),

v2 = x2−
x2 · v1

v1 · v1

v1 = (1, 0, 3, 0)− 4

4
(1, 1, 1, 1) = (0,−1, 2,−1),

v3 = e3 −
e3 · v1

v1 · v1

v1 −
e3 · v2

v2 · v2

v2 = (0, 0, 1, 0) − 1

4
(1, 1, 1, 1)−

−2

6
(0,−1, 2,−1) =

(

−1

4
, 1

12
, 1

12
, 1

12

)

= 1

12
(−3, 1, 1, 1),

v4 = e4 −
e4 · v1

v1 · v1

v1 −
e4 · v2

v2 · v2

v2 −
e4 · v3

v3 · v3

v3 = (0, 0, 0, 1)−

−1

4
(1, 1, 1, 1) − −1

6
(0,−1, 2,−1) − 1/12

1/12
· 1

12
(−3, 1, 1, 1) =

=
(

0,−1

2
, 0, 1

2

)

= 1

2
(0,−1, 0, 1).



It remains to normalize vectors v1 = (1, 1, 1, 1),

v2 = (0,−1, 2,−1), v3 = 1

12
(−3, 1, 1, 1), v4 = 1

2
(0,−1, 0, 1):

‖v1‖ = 2 =⇒ w1 = v1

‖v1‖ = 1

2
(1, 1, 1, 1)

‖v2‖ =
√

6 =⇒ w2 = v2

‖v2‖ = 1√
6
(0,−1, 2,−1)

‖v3‖ = 1√
12

= 1

2
√

3
=⇒ w3 = v3

‖v3‖ = 1

2
√

3
(−3, 1, 1, 1)

‖v4‖ = 1√
2

=⇒ w4 = v4

‖v4‖ = 1√
2
(0,−1, 0, 1)

Thus w1,w2 is an orthonormal basis for V while w3,w4 is an
orthonormal basis for V⊥.



Problem 4. Let A =





1 2 0
1 1 1
0 2 1



.

(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation
det(A − λI ) = 0. We obtain that

det(A − λI ) =

∣

∣

∣

∣

∣

∣

1 − λ 2 0
1 1 − λ 1
0 2 1 − λ

∣

∣

∣

∣

∣

∣

= (1 − λ)3 − 2(1 − λ) − 2(1 − λ) = (1 − λ)
(

(1 − λ)2 − 4
)

= (1 − λ)
(

(1 − λ) − 2
)(

(1 − λ) + 2
)

= −(λ − 1)(λ + 1)(λ − 3).

Hence the matrix A has three eigenvalues: −1, 1, and 3.



Problem 4. Let A =





1 2 0
1 1 1
0 2 1



.

(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector v = (x , y , z) of the matrix A associated with
an eigenvalue λ is a nonzero solution of the vector equation

(A−λI )v = 0 ⇐⇒





1 − λ 2 0
1 1 − λ 1
0 2 1 − λ









x
y
z



 =





0
0
0



 .

To solve the equation, we convert the matrix A − λI to
reduced row echelon form.



First consider the case λ = −1. The row reduction yields

A + I =





2 2 0
1 2 1
0 2 2



 →





1 1 0
1 2 1
0 2 2





→





1 1 0
0 1 1
0 2 2



 →





1 1 0
0 1 1
0 0 0



 →





1 0 −1
0 1 1
0 0 0



 .

Hence

(A + I )v = 0 ⇐⇒
{

x − z = 0,
y + z = 0.

The general solution is x = t, y = −t, z = t, where t ∈ R.
In particular, v1 = (1,−1, 1) is an eigenvector of A associated
with the eigenvalue −1.



Secondly, consider the case λ = 1. The row reduction yields

A − I =





0 2 0

1 0 1

0 2 0



 →





1 0 1

0 2 0

0 2 0



 →





1 0 1

0 1 0

0 2 0



 →





1 0 1

0 1 0

0 0 0



.

Hence

(A − I )v = 0 ⇐⇒
{

x + z = 0,
y = 0.

The general solution is x = −t, y = 0, z = t, where t ∈ R.
In particular, v2 = (−1, 0, 1) is an eigenvector of A associated
with the eigenvalue 1.



Finally, consider the case λ = 3. The row reduction yields

A−3I =





−2 2 0
1 −2 1
0 2 −2



→





1 −1 0
1 −2 1
0 2 −2



→





1 −1 0
0 −1 1
0 2 −2





→





1 −1 0
0 1 −1
0 2 −2



 →





1 −1 0
0 1 −1
0 0 0



 →





1 0 −1
0 1 −1
0 0 0



 .

Hence

(A − 3I )v = 0 ⇐⇒
{

x − z = 0,
y − z = 0.

The general solution is x = t, y = t, z = t, where t ∈ R.
In particular, v3 = (1, 1, 1) is an eigenvector of A associated
with the eigenvalue 3.



Problem 4. Let A =





1 2 0
1 1 1
0 2 1



.

(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for R
3

formed by its eigenvectors.

Namely, the vectors v1 = (1,−1, 1), v2 = (−1, 0, 1), and
v3 = (1, 1, 1) are eigenvectors of the matrix A belonging to
distinct eigenvalues. Therefore these vectors are linearly
independent. It follows that v1, v2, v3 is a basis for R

3.

Alternatively, the existence of a basis for R
3 consisting of

eigenvectors of A already follows from the fact that the matrix
A has three distinct eigenvalues.



Problem 4. Let A =





1 2 0
1 1 1
0 2 1



.

(iv) Find all eigenvalues of the matrix A2.

Suppose that v is an eigenvector of the matrix A associated
with an eigenvalue λ, that is, v 6= 0 and Av = λv. Then

A2v = A(Av) = A(λv) = λ(Av) = λ(λv) = λ2v.

Therefore v is also an eigenvector of the matrix A2 and the
associated eigenvalue is λ2. We already know that the matrix
A has eigenvalues −1, 1, and 3. It follows that A2 has
eigenvalues 1 and 9.

Since a 3×3 matrix can have up to 3 eigenvalues, we need an
additional argument to show that 1 and 9 are the only
eigenvalues of A2. One reason is that the eigenvalue 1 has
multiplicity 2.



Bonus Problem 5. Let L : V → W be a linear mapping of
a finite-dimensional vector space V to a vector space W .
Show that dim Range(L) + dim ker(L) = dim V .

The kernel ker(L) is a subspace of V . It is finite-dimensional
since the vector space V is.

Take a basis v1, v2, . . . , vk for the subspace ker(L), then
extend it to a basis v1, v2, . . . , vk ,u1,u2, . . . ,um for the entire
space V .

Claim Vectors L(u1), L(u2), . . . , L(um) form a basis for the
range of L.

Assuming the claim is proved, we obtain

dim Range(L) = m, dim ker(L) = k , dim V = k + m.



Claim Vectors L(u1), L(u2), . . . , L(um) form a basis for the
range of L.

Proof (spanning): Any vector w ∈ Range(L) is represented
as w = L(v), where v ∈ V . Then

v = α1v1 + α2v2 + · · · + αkvk + β1u1 + β2u2 + · · · + βmum

for some αi , βj ∈ R. It follows that

w = L(v) = α1L(v1)+ · · ·+αkL(vk)+β1L(u1)+ · · ·+βmL(um)

= β1L(u1) + · · · + βmL(um).

Note that L(vi) = 0 since vi ∈ ker(L).

Thus Range(L) is spanned by the vectors L(u1), . . . , L(um).



Claim Vectors L(u1), L(u2), . . . , L(um) form a basis for the
range of L.

Proof (linear independence): Suppose that

t1L(u1) + t2L(u2) + · · · + tmL(um) = 0

for some ti ∈ R. Let u = t1u1 + t2u2 + · · · + tmum. Since

L(u) = t1L(u1) + t2L(u2) + · · · + tmL(um) = 0,

the vector u belongs to the kernel of L. Therefore
u = s1v1 + s2v2 + · · · + skvk for some sj ∈ R. It follows that

t1u1 + t2u2 + · · ·+ tmum− s1v1− s2v2−· · ·− skvk = u−u = 0.

Linear independence of vectors v1, . . . , vk ,u1, . . . ,um implies
that t1 = · · · = tm = 0 (as well as s1 = · · · = sk = 0).

Thus the vectors L(u1), L(u2), . . . , L(um) are linearly
independent.


