> MATH 304
> Linear Algebra

Lecture 36:
Complex eigenvalues and eigenvectors. Symmetric and orthogonal matrices.

Complex numbers

\mathbb{C} : complex numbers.
Complex number: $z=x+i y$,
where $x, y \in \mathbb{R}$ and $i^{2}=-1$.
$i=\sqrt{-1}$: imaginary unit
Alternative notation: $z=x+y i$.
$x=$ real part of z,
$i y=$ imaginary part of z
$y=0 \Longrightarrow z=x$ (real number)
$x=0 \Longrightarrow z=i y$ (purely imaginary number)

We add, subtract, and multiply complex numbers as polynomials in i (but keep in mind that $i^{2}=-1$). If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, then

$$
\begin{gathered}
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \\
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right) \\
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right) .
\end{gathered}
$$

Given $z=x+i y$, the complex conjugate of z is $\bar{z}=x-i y$. The modulus of z is $|z|=\sqrt{x^{2}+y^{2}}$.

$$
z \bar{z}=(x+i y)(x-i y)=x^{2}-(i y)^{2}=x^{2}+y^{2}=|z|^{2}
$$

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}, \quad(x+i y)^{-1}=\frac{x-i y}{x^{2}+y^{2}} .
$$

Complex exponentials

Definition. For any $z \in \mathbb{C}$ let

$$
e^{z}=1+z+\frac{z^{2}}{2!}+\cdots+\frac{z^{n}}{n!}+\cdots
$$

Remark. A sequence of complex numbers $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}, \ldots$ converges to $z=x+i y$ if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$.

Theorem 1 If $z=x+i y, x, y \in \mathbb{R}$, then

$$
e^{z}=e^{x}(\cos y+i \sin y)
$$

In particular, $e^{i \phi}=\cos \phi+i \sin \phi, \phi \in \mathbb{R}$.
Theorem $2 e^{z+w}=e^{z} \cdot e^{w}$ for all $z, w \in \mathbb{C}$.

Proposition $e^{i \phi}=\cos \phi+i \sin \phi$ for all $\phi \in \mathbb{R}$.
Proof: $e^{i \phi}=1+i \phi+\frac{(i \phi)^{2}}{2!}+\cdots+\frac{(i \phi)^{n}}{n!}+\cdots$
The sequence $1, i, i^{2}, i^{3}, \ldots, i^{n}, \ldots$ is periodic:
$\underbrace{1, i,-1,-i}, \underbrace{1, i,-1,-i}, \ldots$
It follows that

$$
\begin{aligned}
& e^{i \phi}=1-\frac{\phi^{2}}{2!}+\frac{\phi^{4}}{4!}-\cdots+(-1)^{k} \frac{\phi^{2 k}}{(2 k)!}+\cdots \\
& +i\left(\phi-\frac{\phi^{3}}{3!}+\frac{\phi^{5}}{5!}-\cdots+(-1)^{k} \frac{\phi^{2 k+1}}{(2 k+1)!}+\cdots\right)
\end{aligned}
$$

$=\cos \phi+i \sin \phi$.

Geometric representation

Any complex number $z=x+i y$ is represented by the vector/point $(x, y) \in \mathbb{R}^{2}$.

$$
x=r \cos \phi, y=r \sin \phi \Longrightarrow z=r(\cos \phi+i \sin \phi)=r e^{i \phi}
$$

$$
\text { If } z_{1}=r_{1} e^{i \phi_{1}} \text { and } z_{2}=r_{2} e^{i \phi_{2}} \text {, then }
$$

$$
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\phi_{1}+\phi_{2}\right)}, z_{1} / z_{2}=\left(r_{1} / r_{2}\right) e^{i\left(\phi_{1}-\phi_{2}\right)}
$$

Fundamental Theorem of Algebra

Any polynomial of degree $n \geq 1$, with complex coefficients, has exactly n roots (counting with multiplicities).

Equivalently, if

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

where $a_{i} \in \mathbb{C}$ and $a_{n} \neq 0$, then there exist complex numbers $z_{1}, z_{2}, \ldots, z_{n}$ such that

$$
p(z)=a_{n}\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right) .
$$

Complex eigenvalues and eigenvectors

Example. $\quad A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right) . \operatorname{det}(A-\lambda I)=\lambda^{2}+1$.
Characteristic roots: $\lambda_{1}=i$ and $\lambda_{2}=-i$.
Associated eigenvectors: $\mathbf{v}_{1}=\binom{1}{-i}$ and $\mathbf{v}_{2}=\binom{1}{i}$.

$$
\begin{aligned}
& \left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\binom{1}{-i}=\binom{i}{1}=i\binom{1}{-i}, \\
& \left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\binom{1}{i}=\binom{-i}{1}=-i\binom{1}{i} .
\end{aligned}
$$

$\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis of eigenvectors. In which space?

Complexification

Instead of the real vector space \mathbb{R}^{2}, we consider a complex vector space \mathbb{C}^{2} (all complex numbers are admissible as scalars).
The linear operator $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(\mathbf{x})=A \mathbf{x}$ is extended to a complex linear operator $F: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \quad F(\mathbf{x})=A \mathbf{x}$.
The vectors $\mathbf{v}_{1}=(1,-i)$ and $\mathbf{v}_{2}=(1, i)$ form a basis for \mathbb{C}^{2}.
\mathbb{C}^{2} is also a real vector space (of real dimension 4). The standard real basis for \mathbb{C}^{2} is $\mathbf{e}_{1}=(1,0), \mathbf{e}_{2}=(0,1)$, $i \mathbf{e}_{1}=(i, 0), \quad \mathbf{e}_{2}=(0, i)$. The matrix of the operator F with respect to this basis has block structure $\left(\begin{array}{ll}A & O \\ O & A\end{array}\right)$.

Dot product of complex vectors

Dot product of real vectors

$$
\begin{aligned}
& \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}: \\
& \mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
\end{aligned}
$$

Dot product of complex vectors
$\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{C}^{n}$:

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}+\cdots+x_{n} \overline{y_{n}} .
$$

If $z=r+i t(t, s \in \mathbb{R})$ then $\bar{z}=r-i t$,
$z \bar{z}=r^{2}+t^{2}=|z|^{2}$.
Hence $\mathbf{x} \cdot \mathbf{x}=\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\cdots+\left|x_{n}\right|^{2} \geq 0$.
Also, $\mathbf{x} \cdot \mathbf{x}=0$ if and only if $\mathbf{x}=\mathbf{0}$.
The norm is defined by $\|\mathbf{x}\|=\sqrt{\mathbf{x} \cdot \mathbf{x}}$.

Normal matrices

Definition. An $n \times n$ matrix A is called

- symmetric if $A^{T}=A$;
- orthogonal if $A A^{T}=A^{T} A=l$, i.e., $A^{T}=A^{-1}$;
- normal if $A A^{T}=A^{T} A$.

Theorem Let A be an $n \times n$ matrix with real entries. Then
(a) A is normal \Longleftrightarrow there exists an orthonormal basis for \mathbb{C}^{n} consisting of eigenvectors of A; (b) A is symmetric \Longleftrightarrow there exists an orthonormal basis for \mathbb{R}^{n} consisting of eigenvectors of A.

Example. $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 1\end{array}\right)$.

- A is symmetric.
- A has three eigenvalues: 0,2 , and 3 .
- Associated eigenvectors are $\mathbf{v}_{1}=(-1,0,1)$,
$\mathbf{v}_{2}=(1,0,1)$, and $\mathbf{v}_{3}=(0,1,0)$, respectively.
- Vectors $\frac{1}{\sqrt{2}} \mathbf{v}_{1}, \frac{1}{\sqrt{2}} \mathbf{v}_{2}, \mathbf{v}_{3}$ form an orthonormal basis for \mathbb{R}^{3}.

Theorem Suppose A is a normal matrix. Then for any $\mathbf{x} \in \mathbb{C}^{n}$ and $\lambda \in \mathbb{C}$ one has

$$
A \mathbf{x}=\lambda \mathbf{x} \Longleftrightarrow A^{T} \mathbf{x}=\bar{\lambda} \mathbf{x}
$$

Thus any normal matrix A shares with A^{T} all real eigenvalues and the corresponding eigenvectors. Also, $A \mathbf{x}=\lambda \mathbf{x} \Longleftrightarrow A \overline{\mathbf{x}}=\bar{\lambda} \overline{\mathbf{x}}$ for any matrix A with real entries.

Corollary All eigenvalues λ of a symmetric matrix are real $(\bar{\lambda}=\lambda)$. All eigenvalues λ of an orthogonal matrix satisfy $\bar{\lambda}=\lambda^{-1} \Longleftrightarrow|\lambda|=1$.

Why are orthogonal matrices called so?

Theorem Given an $n \times n$ matrix A, the following conditions are equivalent:
(i) A is orthogonal: $A^{T}=A^{-1}$;
(ii) columns of A form an orthonormal basis for \mathbb{R}^{n};
(iii) rows of A form an orthonormal basis for \mathbb{R}^{n}.

Proof: Entries of the matrix $A^{T} A$ are dot products of columns of A. Entries of $A A^{T}$ are dot products of rows of A.

Thus an orthogonal matrix is the transition matrix from one orthonormal basis to another.

Example. $\quad A_{\phi}=\left(\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right)$.

- $A_{\phi} A_{\psi}=A_{\phi+\psi}$
- $A_{\phi}^{-1}=A_{-\phi}=A_{\phi}^{T}$
- A_{ϕ} is orthogonal
- $\operatorname{det}\left(A_{\phi}-\lambda I\right)=(\cos \phi-\lambda)^{2}+\sin ^{2} \phi$.
- Eigenvalues: $\lambda_{1}=\cos \phi+i \sin \phi=e^{i \phi}$,
$\lambda_{2}=\cos \phi-i \sin \phi=e^{-i \phi}$.
- Associated eigenvectors: $\mathbf{v}_{1}=(1,-i)$, $\mathbf{v}_{2}=(1, i)$.
- Vectors $\frac{1}{\sqrt{2}} \mathbf{v}_{1}$ and $\frac{1}{\sqrt{2}} \mathbf{v}_{2}$ form an orthonormal basis for \mathbb{C}^{2}.

Consider a linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, L(\mathbf{x})=A \mathbf{x}$, where A is an $n \times n$ orthogonal matrix.
Theorem There exists an orthonormal basis for \mathbb{R}^{n} such that the matrix of L relative to this basis has a diagonal block structure

$$
\left(\begin{array}{cccc}
D_{ \pm 1} & O & \ldots & O \\
O & R_{1} & \ldots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \ldots & R_{k}
\end{array}\right)
$$

where $D_{ \pm 1}$ is a diagonal matrix whose diagonal entries are equal to 1 or -1 , and

$$
R_{j}=\left(\begin{array}{rr}
\cos \phi_{j} & -\sin \phi_{j} \\
\sin \phi_{j} & \cos \phi_{j}
\end{array}\right), \quad \phi_{j} \in \mathbb{R} .
$$

