MATH 304

Linear Algebra

Lecture 37:

Rotations in space.

Orthogonal matrices

Definition. A square matrix A is called **orthogonal** if $AA^T = A^TA = I$, i.e., $A^T = A^{-1}$.

Theorem 1 If A is an $n \times n$ orthogonal matrix, then (i) columns of A form an orthonormal basis for \mathbb{R}^n ; (ii) rows of A also form an orthonormal basis for \mathbb{R}^n .

Proof: Entries of the matrix A^TA are dot products of columns of A. Entries of AA^T are dot products of rows of A.

Theorem 2 If A is an $n \times n$ orthogonal matrix, then **(i)** A is diagonalizable in the complexified vector space \mathbb{C}^n ; **(ii)** all eigenvalues λ of A satisfy $|\lambda|=1$.

Example. $A_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$.

•
$$A_{\phi}A_{\psi} = A_{\phi+\psi}$$

• $A_{\phi}^{-1} = A_{-\phi} = A_{\phi}^{T}$

•
$$A_{\phi}$$
 is orthogonal

•
$$\det(A_{\phi} - \lambda I) = (\cos \phi - \lambda)^2 + \sin^2 \phi$$
.

•
$$\det(A_{\phi} - \lambda I) = (\cos \phi - \lambda) + \sin \phi$$
.
• Eigenvalues: $\lambda_1 = \cos \phi + i \sin \phi = e^{i\phi}$,

• Eigenvalues:
$$\lambda_1 = \cos \phi + i \sin \phi = e^{i\phi}$$

 $\lambda_2 = \cos \phi - i \sin \phi = e^{-i\phi}$.

• Associated eigenvectors:
$$\mathbf{v}_1 = (1, -i)$$
, $\mathbf{v}_2 = (1, i)$.

• Vectors
$$\mathbf{v}_1$$
 and \mathbf{v}_2 form a basis for \mathbb{C}^2 .

Consider a linear operator $L: \mathbb{R}^n \to \mathbb{R}^n$, $L(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ matrix

Theorem The following conditions are equivalent:

- (i) $|L(\mathbf{x})| = |\mathbf{x}|$ for all $\mathbf{x} \in \mathbb{R}^n$;
- (ii) $L(\mathbf{x}) \cdot L(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$; (iii) the matrix A is orthogonal.

Definition. A transformation $f : \mathbb{R}^n \to \mathbb{R}^n$ is called an **isometry** (or a **rigid motion**) if it preserves distances between points: $|f(\mathbf{x}) - f(\mathbf{y})| = |\mathbf{x} - \mathbf{y}|$.

Theorem Any isometry $f: \mathbb{R}^n \to \mathbb{R}^n$ can be represented as $f(\mathbf{x}) = A\mathbf{x} + \mathbf{x}_0$, where $\mathbf{x}_0 \in \mathbb{R}^n$ and A is an orthogonal matrix.

Consider a linear operator $L : \mathbb{R}^n \to \mathbb{R}^n$, $L(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ orthogonal matrix.

Theorem There exists an orthonormal basis for \mathbb{R}^n such that the matrix of L relative to this basis has a diagonal block structure

$$\begin{pmatrix} D_{\pm 1} & O & \dots & O \\ O & R_1 & \dots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \dots & R_k \end{pmatrix},$$

where $D_{\pm 1}$ is a diagonal matrix whose diagonal entries are equal to 1 or -1, and

$$R_j = \begin{pmatrix} \cos \phi_j & -\sin \phi_j \\ \sin \phi_i & \cos \phi_i \end{pmatrix}, \quad \phi_j \in \mathbb{R}.$$

Classification of 2×2 orthogonal matrices:

$$\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \qquad \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 rotation reflection about the origin in a line

Eigenvalues: $e^{i\phi}$ and $e^{-i\phi}$ —1 and 1

Classification of 3×3 orthogonal matrices:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$C = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{pmatrix}.$$

$$A = \text{rotation about a line; } B = \text{reflection in a}$$

$$\text{plane; } C = \text{rotation about a line combined with}$$

reflection in the orthogonal plane. $\det A = 1$. $\det B = \det C = -1$.

A has eigenvalues 1, $e^{i\phi}$, $e^{-i\phi}$. B has eigenvalues -1, 1, 1. C has eigenvalues -1, $e^{i\phi}$, $e^{-i\phi}$.

Rotations in space

If the axis of rotation is oriented, we can say about *clockwise* or *counterclockwise* rotations (with respect to the view from the positive semi-axis).

Clockwise rotations about coordinate axes

$$\begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix}$$

Problem. Find the matrix of the rotation by 90° about the line spanned by the vector $\mathbf{a} = (1, 2, 2)$. The rotation is assumed to be counterclockwise when looking from the tip of \mathbf{a} .

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$
 is the matrix of (counterclockwise) rotation by 90° about the x-axis.

We need to find an orthonormal basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ such that \mathbf{v}_1 points in the same direction as \mathbf{a} . Also, the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ should obey the same hand rule as the standard basis. Then B will be the matrix of the given rotation relative to the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

Let U denote the transition matrix from the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to the standard basis (columns of U are vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$). Then the desired matrix is $A = UBU^{-1}$

Since $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is going to be an orthonormal basis, the matrix U will be orthogonal. Then $U^{-1} = U^T$ and $A = UBU^T$.

Remark. The basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ obeys the same hand rule as the standard basis if and only if det U > 0.

Hint. Vectors $\mathbf{a} = (1, 2, 2)$, $\mathbf{b} = (-2, -1, 2)$, and $\mathbf{c} = (2, -2, 1)$ are orthogonal.

We have $|\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}| = 3$, hence $\mathbf{v}_1 = \frac{1}{3}\mathbf{a}$, $\mathbf{v}_2 = \frac{1}{3}\mathbf{b}$, $\mathbf{v}_3 = \frac{1}{3}\mathbf{c}$ is an orthonormal basis.

Transition matrix:
$$U = \frac{1}{3} \begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{pmatrix}$$
. det $U = \frac{1}{27} \begin{vmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{vmatrix} = \frac{1}{27} \cdot 27 = 1$.

In the case det U=-1, we would change \mathbf{v}_3 to $-\mathbf{v}_3$, or change \mathbf{v}_2 to $-\mathbf{v}_2$, or interchange \mathbf{v}_2 and \mathbf{v}_3 .

$$A = UBU^T$$

$$=\frac{1}{3}\begin{pmatrix}1 & -2 & 2\\ 2 & -1 & -2\\ 2 & 2 & 1\end{pmatrix}\begin{pmatrix}1 & 0 & 0\\ 0 & 0 & -1\\ 0 & 1 & 0\end{pmatrix}\cdot\frac{1}{3}\begin{pmatrix}1 & 2 & 2\\ -2 & -1 & 2\\ 2 & -2 & 1\end{pmatrix}$$

$$\binom{1}{2}$$

 $=\frac{1}{9}\begin{pmatrix}1 & -4 & 8\\8 & 4 & 1\\-4 & 7 & 4\end{pmatrix}.$

$$1 - \frac{1}{2}$$

$$=\frac{1}{9}\begin{pmatrix}1 & 2 & 2\\ 2 & -2 & 1\\ 2 & 1 & -2\end{pmatrix}\begin{pmatrix}1 & 2 & 2\\ -2 & -1 & 2\\ 2 & -2 & 1\end{pmatrix}$$

$$U = \frac{1}{3} \begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{pmatrix}$$
 is an orthogonal matrix.

 $\det U = 1 \implies U$ is a rotation matrix.

Problem. (a) Find the axis of the rotation.(b) Find the angle of the rotation.

The axis is the set of points $\mathbf{x} \in \mathbb{R}^n$ such that $U\mathbf{x} = \mathbf{x} \iff (U - I)\mathbf{x} = \mathbf{0}$. To find the axis, we apply row reduction to the matrix

$$3(U-I) = 3U - 3I = \begin{pmatrix} -2 & -2 & 2 \\ 2 & -4 & -2 \\ 2 & 2 & -2 \end{pmatrix}.$$

Thus
$$U\mathbf{x}=\mathbf{x}\iff \begin{cases} x-z=0,\\ y=0. \end{cases}$$
 The general solution is $x=t,\ y=0,\ z=t,$ where $t\in\mathbb{R}.$

 \implies **d** = (1,0,1) is the direction of the axis.

 $\begin{pmatrix} -2 & -2 & 2 \\ 2 & -4 & -2 \\ 2 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 2 & -4 & -2 \\ 2 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & -6 & 0 \\ 2 & 2 & 2 \end{pmatrix}$

 $\rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & -6 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

$$U = \frac{1}{3} \begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{pmatrix}$$

Let ϕ be the angle of rotation. Then the eigenvalues of U are 1, $e^{i\phi}$, and $e^{-i\phi}$. Therefore $\det(U-\lambda I)=(1-\lambda)(e^{i\phi}-\lambda)(e^{-i\phi}-\lambda)$.

Besides,
$$\det(U - \lambda I) = -\lambda^3 + c_1\lambda^2 + c_2\lambda + c_3$$
, where $c_1 = \operatorname{tr} U$ (the sum of diagonal entries). It follows that

 $\operatorname{tr} U = 1/3 \implies \cos \phi = -1/3 \implies \phi \approx 109.47^{\circ}$

 $\operatorname{tr} U = 1 + e^{i\phi} + e^{-i\phi} = 1 + 2\cos\phi.$