MATH 304
 Linear Algebra
 Lecture 37:
 Rotations in space.

Orthogonal matrices

Definition. A square matrix A is called orthogonal if $A A^{T}=A^{T} A=I$, i.e., $A^{T}=A^{-1}$.

Theorem 1 If A is an $n \times n$ orthogonal matrix, then (i) columns of A form an orthonormal basis for \mathbb{R}^{n}; (ii) rows of A also form an orthonormal basis for \mathbb{R}^{n}. Proof: Entries of the matrix $A^{\top} A$ are dot products of columns of A. Entries of $A A^{T}$ are dot products of rows of A.

Theorem 2 If A is an $n \times n$ orthogonal matrix, then (i) A is diagonalizable in the complexified vector space \mathbb{C}^{n}; (ii) all eigenvalues λ of A satisfy $|\lambda|=1$.

Example. $\quad A_{\phi}=\left(\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right)$.

- $A_{\phi} A_{\psi}=A_{\phi+\psi}$
- $A_{\phi}^{-1}=A_{-\phi}=A_{\phi}^{T}$
- A_{ϕ} is orthogonal
- $\operatorname{det}\left(A_{\phi}-\lambda I\right)=(\cos \phi-\lambda)^{2}+\sin ^{2} \phi$.
- Eigenvalues: $\lambda_{1}=\cos \phi+i \sin \phi=e^{i \phi}$,
$\lambda_{2}=\cos \phi-i \sin \phi=e^{-i \phi}$.
- Associated eigenvectors: $\mathbf{v}_{1}=(1,-i)$, $\mathbf{v}_{2}=(1, i)$.
- Vectors \mathbf{v}_{1} and \mathbf{v}_{2} form a basis for \mathbb{C}^{2}.

Consider a linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, L(\mathbf{x})=A \mathbf{x}$, where A is an $n \times n$ matrix.

Theorem The following conditions are equivalent:
(i) $|L(\mathbf{x})|=|\mathbf{x}|$ for all $\mathbf{x} \in \mathbb{R}^{n}$;
(ii) $L(\mathbf{x}) \cdot L(\mathbf{y})=\mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$;
(iii) the matrix A is orthogonal.

Definition. A transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called an isometry (or a rigid motion) if it preserves distances between points: $|f(\mathbf{x})-f(\mathbf{y})|=|\mathbf{x}-\mathbf{y}|$.

Theorem Any isometry $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ can be represented as $f(\mathbf{x})=A \mathbf{x}+\mathbf{x}_{0}$, where $\mathbf{x}_{0} \in \mathbb{R}^{n}$ and A is an orthogonal matrix.

Consider a linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, L(\mathbf{x})=A \mathbf{x}$, where A is an $n \times n$ orthogonal matrix.
Theorem There exists an orthonormal basis for \mathbb{R}^{n} such that the matrix of L relative to this basis has a diagonal block structure

$$
\left(\begin{array}{cccc}
D_{ \pm 1} & O & \ldots & O \\
O & R_{1} & \ldots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \ldots & R_{k}
\end{array}\right)
$$

where $D_{ \pm 1}$ is a diagonal matrix whose diagonal entries are equal to 1 or -1 , and

$$
R_{j}=\left(\begin{array}{rr}
\cos \phi_{j} & -\sin \phi_{j} \\
\sin \phi_{j} & \cos \phi_{j}
\end{array}\right), \quad \phi_{j} \in \mathbb{R}
$$

Classification of 2×2 orthogonal matrices:

$$
\left(\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \quad\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

rotation about the origin

reflection in a line -1

Eigenvalues: $\quad e^{i \phi}$ and $e^{-i \phi} \quad-1$ and 1

Classification of 3×3 orthogonal matrices:
$A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi\end{array}\right)$,
$B=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$,
$C=\left(\begin{array}{rcc}-1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi\end{array}\right)$.
$A=$ rotation about a line; $B=$ reflection in a plane; $C=$ rotation about a line combined with reflection in the orthogonal plane. $\operatorname{det} A=1, \operatorname{det} B=\operatorname{det} C=-1$.
A has eigenvalues $1, e^{i \phi}, e^{-i \phi}$. B has eigenvalues
$-1,1,1$. C has eigenvalues $-1, e^{i \phi}, e^{-i \phi}$.

Rotations in space

If the axis of rotation is oriented, we can say about clockwise or counterclockwise rotations (with respect to the view from the positive semi-axis).

Clockwise rotations about coordinate axes

Z

Z

$$
\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right)
$$

Problem. Find the matrix of the rotation by 90° about the line spanned by the vector $\mathbf{a}=(1,2,2)$. The rotation is assumed to be counterclockwise when looking from the tip of \mathbf{a}.
$B=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right) \quad \begin{gathered}\text { is the matrix of (counterclockwise) } \\ \text { rotation by } 90^{\circ} \text { about the } x \text {-axis. }\end{gathered}$
We need to find an orthonormal basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ such that \mathbf{v}_{1} points in the same direction as \mathbf{a}. Also, the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ should obey the same hand rule as the standard basis. Then B will be the matrix of the given rotation relative to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

Let U denote the transition matrix from the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to the standard basis (columns of U are vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$). Then the desired matrix is $A=U B U^{-1}$.

Since $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is going to be an orthonormal basis, the matrix U will be orthogonal. Then $U^{-1}=U^{T}$ and $A=U B U^{T}$.

Remark. The basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ obeys the same hand rule as the standard basis if and only if $\operatorname{det} U>0$.

Hint. Vectors $\mathbf{a}=(1,2,2), \mathbf{b}=(-2,-1,2)$, and $\mathbf{c}=(2,-2,1)$ are orthogonal.
We have $|\mathbf{a}|=|\mathbf{b}|=|\mathbf{c}|=3$, hence $\mathbf{v}_{1}=\frac{1}{3} \mathbf{a}$, $\mathbf{v}_{2}=\frac{1}{3} \mathbf{b}, \mathbf{v}_{3}=\frac{1}{3} \mathbf{c}$ is an orthonormal basis.
Transition matrix: $U=\frac{1}{3}\left(\begin{array}{rrr}1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1\end{array}\right)$.

$$
\operatorname{det} U=\frac{1}{27}\left|\begin{array}{rrr}
1 & -2 & 2 \\
2 & -1 & -2 \\
2 & 2 & 1
\end{array}\right|=\frac{1}{27} \cdot 27=1
$$

In the case $\operatorname{det} U=-1$, we would change \mathbf{v}_{3} to $-\mathbf{v}_{3}$, or change \mathbf{v}_{2} to $-\mathbf{v}_{2}$, or interchange \mathbf{v}_{2} and \mathbf{v}_{3}.

$$
\begin{aligned}
& A=U B U^{\top} \\
& =\frac{1}{3}\left(\begin{array}{rrr}
1 & -2 & 2 \\
2 & -1 & -2 \\
2 & 2 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \cdot \frac{1}{3}\left(\begin{array}{rrr}
1 & 2 & 2 \\
-2 & -1 & 2 \\
2 & -2 & 1
\end{array}\right) \\
& =\frac{1}{9}\left(\begin{array}{rrr}
1 & 2 & 2 \\
2 & -2 & 1 \\
2 & 1 & -2
\end{array}\right)\left(\begin{array}{rrr}
1 & 2 & 2 \\
-2 & -1 & 2 \\
2 & -2 & 1
\end{array}\right) \\
& =\frac{1}{9}\left(\begin{array}{rrr}
1 & -4 & 8 \\
8 & 4 & 1 \\
-4 & 7 & 4
\end{array}\right) .
\end{aligned}
$$

$U=\frac{1}{3}\left(\begin{array}{rrr}1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1\end{array}\right) \quad$ is an orthogonal matrix. $\operatorname{det} U=1 \Longrightarrow U$ is a rotation matrix.

Problem. (a) Find the axis of the rotation. (b) Find the angle of the rotation.

The axis is the set of points $x \in \mathbb{R}^{n}$ such that $U \mathbf{x}=\mathbf{x} \Longleftrightarrow(U-I) \mathbf{x}=\mathbf{0}$. To find the axis, we apply row reduction to the matrix

$$
3(U-I)=3 U-3 I=\left(\begin{array}{rrr}
-2 & -2 & 2 \\
2 & -4 & -2 \\
2 & 2 & -2
\end{array}\right) .
$$

$\left(\begin{array}{rrr}-2 & -2 & 2 \\ 2 & -4 & -2 \\ 2 & 2 & -2\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & 1 & -1 \\ 2 & -4 & -2 \\ 2 & 2 & -2\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & 1 & -1 \\ 0 & -6 & 0 \\ 2 & 2 & -2\end{array}\right)$
$\rightarrow\left(\begin{array}{rrr}1 & 1 & -1 \\ 0 & -6 & 0 \\ 0 & 0 & 0\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$
Thus $U \mathbf{x}=\mathbf{x} \Longleftrightarrow\left\{\begin{array}{l}x-z=0, \\ y=0 .\end{array}\right.$
The general solution is $x=t, y=0, z=t$, where $t \in \mathbb{R}$.
$\Longrightarrow \mathbf{d}=(1,0,1)$ is the direction of the axis.

$$
U=\frac{1}{3}\left(\begin{array}{rrr}
1 & -2 & 2 \\
2 & -1 & -2 \\
2 & 2 & 1
\end{array}\right)
$$

Let ϕ be the angle of rotation. Then the eigenvalues of U are $1, e^{i \phi}$, and $e^{-i \phi}$. Therefore

$$
\operatorname{det}(U-\lambda I)=(1-\lambda)\left(e^{i \phi}-\lambda\right)\left(e^{-i \phi}-\lambda\right)
$$

Besides, $\operatorname{det}(U-\lambda I)=-\lambda^{3}+c_{1} \lambda^{2}+c_{2} \lambda+c_{3}$, where $c_{1}=\operatorname{tr} U$ (the sum of diagonal entries). It follows that

$$
\operatorname{tr} U=1+e^{i \phi}+e^{-i \phi}=1+2 \cos \phi .
$$

$\operatorname{tr} U=1 / 3 \Longrightarrow \cos \phi=-1 / 3 \Longrightarrow \phi \approx 109.47^{\circ}$

